A197021
Decimal expansion of the radius of the circle tangent to the curve y=cos(3x) at points (x,y) and (-x,y), where 0
3, 7, 1, 8, 1, 1, 0, 4, 1, 7, 3, 6, 1, 7, 2, 1, 8, 4, 0, 1, 9, 5, 6, 4, 7, 3, 5, 1, 5, 8, 8, 5, 7, 9, 0, 2, 8, 9, 7, 0, 6, 2, 6, 3, 9, 2, 8, 8, 3, 6, 4, 8, 1, 7, 8, 7, 7, 3, 4, 1, 4, 7, 3, 3, 1, 8, 5, 2, 8, 8, 2, 0, 5, 1, 3, 1, 2, 7, 3, 1, 4, 2, 0, 5, 9, 8, 0, 8, 0, 0, 1, 2, 2, 6, 8, 5, 7, 4, 2
Offset: 0
Examples
radius=0.3718110417361721840195647351588579028970626...
Programs
-
Mathematica
r = .371; c = 3; Show[Plot[Cos[c*x], {x, -0.5, 0.5}], ContourPlot[x^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic] t = x /. FindRoot[c*Sin[c*x] Cos[c*x] - x == x*Sqrt[1 + (c*Sin[c*x])^2], {x, .25, .55}, WorkingPrecision -> 100] RealDigits[t] (* x coordinate of tangency point *) y = Cos[c*t] (* y coordinate of tangency point *) radius = Cos[c*t] - t/(c*Sin[c*t]) RealDigits[radius] (* A197021 *) slope = -c*Sin[c*t] (* slope at tangency point *)
Comments