This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197023 #9 Mar 30 2012 18:57:52 %S A197023 3,9,5,8,6,2,4,3,7,8,4,7,4,8,0,7,9,8,2,4,0,7,0,7,7,2,2,5,6,6,3,1,5,5, %T A197023 2,7,3,3,4,3,4,3,9,2,9,2,4,9,1,0,0,0,8,2,5,0,4,4,2,7,9,6,3,2,5,1,2,6, %U A197023 4,4,3,7,9,1,1,1,8,8,1,3,0,8,6,6,5,3,8,4,8,9,0,0,5,9,1,5,8,3,6 %N A197023 Decimal expansion of the radius of the circle tangent to the curve y=1/(1+x^2) and to the positive x and y axes. %C A197023 Let (x,y) denote the point of tangency. Then %C A197023 x=0.611116305530271280094961817959748153764566... %C A197023 y=0.728086522083031555694579423798015759485165... %C A197023 slope=-0.64791770945231344102369199673001177755... %C A197023 (The Mathematica program includes a graph.) %e A197023 radius=0.39586243784748079824070772256631552733434... %t A197023 r = .396; c = 1; %t A197023 Show[Plot[c/(1 + x^2), {x, 0, 1.5}], %t A197023 ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], %t A197023 PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic] %t A197023 u[x_] := (x*(1 + x^2)^3 - 2*x*c^2)/((1 + x^2)^3 - 2*c*x*(1 + x^2)) %t A197023 v = x /. FindRoot[c/(1 + x^2) == u[x] + Sqrt[2*u[x]*x - x^2], {x, .4, 1}, %t A197023 WorkingPrecision -> 100] %t A197023 t = Re[v] ; RealDigits[t] (* x coord. of tangency pt. *) %t A197023 y = c/(1 + t^2) (* y coord. of tangency pt. *) %t A197023 radius = u[t] %t A197023 RealDigits[radius] (* A197023 *) %t A197023 slope = -2*c*t/(1 + t^2)^2 (* slope at tangency point *) %Y A197023 Cf. A197020, A197024, A197025, A197016. %K A197023 nonn,cons %O A197023 0,1 %A A197023 _Clark Kimberling_, Oct 08 2011