A197024 Decimal expansion of the radius of the circle tangent to the curve y=(1/2)/(1+x^2) and to the positive x and y axes.
2, 3, 4, 0, 0, 5, 1, 4, 0, 5, 9, 5, 1, 3, 7, 9, 0, 1, 7, 3, 4, 7, 2, 7, 6, 2, 3, 7, 6, 7, 2, 2, 9, 9, 6, 0, 6, 2, 0, 4, 5, 8, 8, 8, 6, 4, 7, 4, 9, 5, 1, 1, 9, 4, 1, 4, 4, 3, 8, 1, 0, 3, 3, 4, 0, 3, 0, 6, 3, 4, 2, 1, 9, 4, 1, 8, 8, 9, 9, 4, 7, 3, 6, 2, 2, 0, 5, 9, 8, 6, 0, 2, 2, 8, 6, 1, 5, 2, 2, 0
Offset: 0
Examples
radius=0.23400514059513790173472762376722996062...
Programs
-
Mathematica
r = .234; c = 1/2; Show[Plot[c/(1 + x^2), {x, 0, 0.8}], ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic] u[x_] := (x*(1 + x^2)^3 - 2*x*c^2)/((1 + x^2)^3 - 2*c*x*(1 + x^2)) v = x /. FindRoot[c/(1 + x^2) == u[x] + Sqrt[2*u[x]*x - x^2], {x, .4, 1}, WorkingPrecision -> 100] t = Re[v]; RealDigits[t] (* x coord. of tangency pt. *) y = c/(1 + t^2) (* y coord. of tangency pt. *) radius = u[t] RealDigits[radius] (* A197024 *) slope = -2*c*t/(1 + t^2)^2 (* slope at tangency pt. *)
Comments