This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197026 #8 Feb 02 2013 13:00:21 %S A197026 4,2,7,4,3,2,4,5,1,6,9,3,5,8,5,8,2,7,1,9,2,6,8,0,2,4,1,7,9,6,1,6,4,7, %T A197026 2,0,3,6,8,0,0,9,4,8,2,8,2,9,0,5,0,9,5,2,2,1,7,3,9,7,4,6,3,4,1,8,3,1, %U A197026 9,9,8,4,8,5,3,6,3,3,8,1,6,4,3,8,6,8,1,5,0,4,5,9,7,8,4,7,7,6,1 %N A197026 Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(x) at points (x,y), (-x,y). %C A197026 Let (x,y) denote the point of tangency, where x>0: %C A197026 x=2.3973091169572703557415944811143634671454653692... %C A197026 y=0.7355734556385944841653303915319993812641279844... %C A197026 slope=0.6774449729386857532010706302057868510403567... %C A197026 (The Mathematica program includes a graph.) %e A197026 radius=4.27432451693585827192680241796164720368009482... %t A197026 r = 4.27; c = 1; %t A197026 Show[Plot[-Cos[c*x], {x, -5, 5}], %t A197026 ContourPlot[x^2 + (y - r)^2 == r^2, {x, -5, 5}, {y, -1.5, 8.7}], PlotRange -> All, AspectRatio -> Automatic] %t A197026 u[x_] := -Cos[c*x] + x/(c*Sin[c*x]); %t A197026 t = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, 2, 3}, WorkingPrecision -> 100] %t A197026 RealDigits[t] (* x coordinate of tangency point *) %t A197026 y = -Cos[c*t] (* y coordinate of tangency point *) %t A197026 radius = u[t] %t A197026 RealDigits[radius] (* A197026 *) %t A197026 slope = c*Sin[c*t] (* slope at tangency point *) %Y A197026 Cf. A197027, A196028. %K A197026 nonn,cons %O A197026 1,1 %A A197026 _Clark Kimberling_, Oct 09 2011