This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197027 #5 Mar 30 2012 18:57:52 %S A197027 1,3,2,1,1,3,7,4,7,6,5,2,2,8,5,9,7,8,2,8,0,9,0,0,9,8,4,9,5,8,2,5,1,6, %T A197027 2,4,4,3,1,5,6,3,7,9,7,6,8,2,7,5,4,6,2,6,4,4,3,4,6,5,0,4,2,9,9,8,3,5, %U A197027 8,8,3,0,0,9,6,6,5,9,9,7,7,4,3,6,5,9,4,4,1,1,3,4,6,0,4,5,4,3,9,9 %N A197027 Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(2x) at points (x,y), (-x,y). %C A197027 Let (x,y) denote the point of tangency, where x>0: %C A197027 x=1.116022083263345851737313595257930429156... %C A197027 y=0.614102158068589478230317674621719242848... %C A197027 slope=1.578453090155676616014698886314279426... %C A197027 (The Mathematica program includes a graph.) %e A197027 radius=1.321137476522859782809009849582516244... %t A197027 r = 1.32; c = 2; %t A197027 Show[Plot[-Cos[c*x], {x, -4, 4}], %t A197027 ContourPlot[x^2 + (y - r)^2 == r^2, {x, -3, 3}, {y, -1.5, 3}], PlotRange -> All, AspectRatio -> Automatic] %t A197027 u[x_] := -Cos[c*x] + x/(c*Sin[c*x]); %t A197027 t1 = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, 1, 1.5}, WorkingPrecision -> 100] %t A197027 t = Re[t1]; %t A197027 RealDigits[t] (* x coordinate of tangency point *) %t A197027 y = -Cos[c*t] (* y coordinate of tangency point *) %t A197027 radius = u[t] %t A197027 RealDigits[radius] (* A197027 *) %t A197027 slope = c*Sin[c*t] (* slope at tangency point *) %Y A197027 Cf. A197026, A196028, A196021. %K A197027 nonn,cons %O A197027 1,2 %A A197027 _Clark Kimberling_, Oct 09 2011