This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197028 #5 Mar 30 2012 18:57:52 %S A197028 7,3,6,6,0,6,6,3,4,1,4,7,1,5,1,8,2,4,9,9,2,0,7,8,9,0,5,0,8,2,4,5,2,0, %T A197028 6,4,8,2,2,7,6,0,6,3,9,9,8,3,9,0,2,7,9,1,5,0,8,1,4,8,0,8,0,6,8,3,6,8, %U A197028 0,1,0,5,1,2,3,8,5,3,9,8,9,0,6,3,9,4,3,6,5,7,3,0,8,0,0,9,2,6,2 %N A197028 Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(3x) at points (x,y), (-x,y). %C A197028 Let (x,y) denote the point of tangency, where x>0: %C A197028 x=0.6888117352645178597708892254141829843113... %C A197028 y=0.4755937478149254230061087613442876576146... %C A197028 slope=2.6389951275730271940627334805152084806... %C A197028 (The Mathematica program includes a graph.) %e A197028 radius=0.7366066341471518249920789050824520648... %t A197028 r = .737; c = 3; %t A197028 Show[Plot[-Cos[c*x], {x, -2, 2}], %t A197028 ContourPlot[x^2 + (y - r)^2 == r^2, {x, -3, 3}, {y, -1.5, 3}], PlotRange -> All, AspectRatio -> Automatic] %t A197028 u[x_] := -Cos[c*x] + x/(c*Sin[c*x]); %t A197028 t1 = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, .6, .8}, WorkingPrecision -> 100] %t A197028 t = Re[t1]; %t A197028 RealDigits[t] (* x coordinate of tangency point *) %t A197028 y = -Cos[c*t] (* y coordinate of tangency point *) %t A197028 radius = u[t] %t A197028 RealDigits[radius] (* A197028 *) %t A197028 slope = c*Sin[c*t] (* slope at tangency point *) %Y A197028 Cf. A197026, A196027, A196029, A196021. %K A197028 nonn,cons %O A197028 0,1 %A A197028 _Clark Kimberling_, Oct 09 2011