This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197029 #5 Mar 30 2012 18:57:52 %S A197029 5,0,6,0,6,4,3,3,3,2,1,6,5,2,4,5,1,0,0,5,4,6,3,7,6,2,1,7,7,3,4,7,1,4, %T A197029 4,1,1,6,9,4,8,7,3,8,8,6,1,8,3,2,2,7,7,3,2,8,6,6,4,0,3,6,7,1,7,8,8,6, %U A197029 3,1,4,2,1,9,5,5,2,2,8,4,0,9,3,3,8,4,7,3,0,0,8,5,2,6,1,4,6,0,9 %N A197029 Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(4x) at points (x,y), (-x,y). %C A197029 Let (x,y) denote the point of tangency, where x>0: %C A197029 x=0.488618197079923270050681129865078039260837... %C A197029 y=0.374332154777652501331094642913853652491893... %C A197029 slope=3.709178750935618333987343550424591912283... %C A197029 (The Mathematica program includes a graph.) %e A197029 radius=0.5060643332165245100546376217734714411... %t A197029 r = .5; c = 4; %t A197029 Show[Plot[-Cos[c*x], {x, -1, 1}], %t A197029 ContourPlot[x^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1.5, 2}], PlotRange -> All, AspectRatio -> Automatic] %t A197029 u[x_] := -Cos[c*x] + x/(c*Sin[c*x]); %t A197029 t1 = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, .4, .5}, WorkingPrecision -> 100] %t A197029 t = Re[t1] (* x coordinate of tangency point *) %t A197029 y = -Cos[c*t] (* y coordinate of tangency point *) %t A197029 radius = u[t] %t A197029 RealDigits[radius] (* A197029 *) %t A197029 slope = c*Sin[c*t] (* slope at tangency point *) %Y A197029 Cf. A197026, A196027, A196028, A196022. %K A197029 nonn,cons %O A197029 0,1 %A A197029 _Clark Kimberling_, Oct 09 2011