cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197029 Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(4x) at points (x,y), (-x,y).

This page as a plain text file.
%I A197029 #5 Mar 30 2012 18:57:52
%S A197029 5,0,6,0,6,4,3,3,3,2,1,6,5,2,4,5,1,0,0,5,4,6,3,7,6,2,1,7,7,3,4,7,1,4,
%T A197029 4,1,1,6,9,4,8,7,3,8,8,6,1,8,3,2,2,7,7,3,2,8,6,6,4,0,3,6,7,1,7,8,8,6,
%U A197029 3,1,4,2,1,9,5,5,2,2,8,4,0,9,3,3,8,4,7,3,0,0,8,5,2,6,1,4,6,0,9
%N A197029 Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(4x) at points (x,y), (-x,y).
%C A197029 Let (x,y) denote the point of tangency, where x>0:
%C A197029 x=0.488618197079923270050681129865078039260837...
%C A197029 y=0.374332154777652501331094642913853652491893...
%C A197029 slope=3.709178750935618333987343550424591912283...
%C A197029 (The Mathematica program includes a graph.)
%e A197029 radius=0.5060643332165245100546376217734714411...
%t A197029 r = .5; c = 4;
%t A197029 Show[Plot[-Cos[c*x], {x, -1, 1}],
%t A197029  ContourPlot[x^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1.5, 2}], PlotRange -> All, AspectRatio -> Automatic]
%t A197029 u[x_] := -Cos[c*x] + x/(c*Sin[c*x]);
%t A197029 t1 = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, .4, .5}, WorkingPrecision -> 100]
%t A197029 t = Re[t1]    (* x coordinate of tangency point *)
%t A197029 y = -Cos[c*t] (* y coordinate of tangency point *)
%t A197029 radius = u[t]
%t A197029 RealDigits[radius] (* A197029 *)
%t A197029 slope = c*Sin[c*t] (* slope at tangency point *)
%Y A197029 Cf. A197026, A196027, A196028, A196022.
%K A197029 nonn,cons
%O A197029 0,1
%A A197029 _Clark Kimberling_, Oct 09 2011