A197008 Decimal expansion of the shortest distance from x axis through (1,2) to y axis.
4, 1, 6, 1, 9, 3, 8, 1, 8, 4, 9, 4, 1, 4, 6, 2, 7, 5, 2, 3, 9, 0, 0, 8, 0, 7, 2, 2, 9, 4, 6, 6, 9, 9, 6, 3, 7, 7, 8, 9, 3, 2, 5, 5, 8, 7, 5, 5, 0, 9, 3, 0, 3, 0, 2, 4, 2, 9, 6, 2, 3, 8, 5, 2, 7, 0, 6, 8, 8, 5, 0, 3, 6, 5, 0, 2, 9, 1, 5, 9, 3, 8, 2, 4, 6, 1, 3, 8, 8, 2, 2, 0, 6, 7, 8, 3, 6, 1, 2, 3
Offset: 1
Examples
d=4.161938184941462752390080... x-intercept: U=(2.5874..., 0) y-intercept: V=(0, 3.2599...)
Links
- R. J. Mathar, OEIS A197008
- Raul Prisacariu, Lill's method and the Philo Line for Right Angles.
- Index entries for algebraic numbers, degree 6
Programs
-
Maple
(1+2^(2/3))^(3/2); evalf(%) ; # R. J. Mathar, Nov 08 2022
-
Mathematica
f[x_] := x^2 + (k*x/(x - h))^2; t = h + (h*k^2)^(1/3); h = 1; k = 2; d = N[f[t]^(1/2), 100] RealDigits[d] (* this sequence *) x = N[t] (* x-intercept; -1+4^(1/3); cf. A005480 *) y = N[k*t/(t - h)] (* y-intercept *) Show[Plot[k + k (x - h)/(h - t), {x, 0, t}], ContourPlot[(x - h)^2 + (y - k)^2 == .001, {x, 0, 4}, {y, 0, 4}], PlotRange -> All, AspectRatio -> Automatic]
-
PARI
polrootsreal(x^6 - 15*x^4 - 33*x^2 - 125)[2] \\ Charles R Greathouse IV, Feb 03 2025
Comments