A197034 Decimal expansion of the x-intercept of the shortest segment from the x axis through (3,1) to the line y=x.
3, 4, 7, 7, 9, 6, 7, 2, 4, 3, 0, 0, 9, 0, 1, 2, 4, 7, 4, 6, 4, 6, 9, 2, 5, 0, 8, 1, 3, 4, 2, 1, 7, 5, 1, 0, 1, 4, 4, 7, 5, 4, 9, 5, 5, 2, 7, 5, 8, 1, 9, 3, 4, 4, 4, 2, 3, 5, 9, 0, 9, 9, 3, 8, 6, 0, 4, 6, 0, 4, 0, 6, 3, 1, 9, 6, 0, 1, 1, 8, 7, 6, 9, 8, 4, 9, 7, 7, 5, 3, 6, 2, 6, 5, 5, 3, 0, 8, 5
Offset: 1
Examples
length of Philo line: 2.60819402496101...; see A197035 endpoint on x axis: (3.47797, 0) endpoint on line y=x: (2.35321, 2.35321)
Programs
-
Mathematica
f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2; g[t_] := D[f[t], t]; Factor[g[t]] p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3 m = 1; h = 3; k = 1; (* slope m; point (h,k) *) t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A197034 *) {N[t], 0} (* endpoint on x axis *) {N[k*t/(k + m*t - m*h)], N[m*k*t/(k + m*t - m*h)]} (* upper endpoint *) d = N[Sqrt[f[t]], 100] RealDigits[d] (* A197035 *) Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 4}], ContourPlot[(x - h)^2 + (y - k)^2 == .002, {x, 0, 3.5}, {y, 0, 3}], PlotRange -> {0, 3}, AspectRatio -> Automatic]
Extensions
Last digit removed (representation truncated, not rounded up). - R. J. Mathar, Nov 08 2022
Comments