This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197049 #29 Feb 16 2025 08:33:15 %S A197049 1,2,4,10,18,38,78,156,320,654,1326,2706,5518,11228,22884,46634,94978, %T A197049 193518,394286,803220,1636448,3334030,6792334,13838202,28192958, %U A197049 57437684,117018884,238404906,485705682,989536598,2016000430,4107230284,8367729920,17047719214 %N A197049 Number of n X 3 0..4 arrays with each element equal to the number its horizontal and vertical zero neighbors. %C A197049 Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's. %C A197049 In other words, the number of maximal independent vertex sets (and minimal vertex covers) in the 3 X n grid graph. - _Eric W. Weisstein_, Aug 07 2017 %H A197049 Alois P. Heinz, <a href="/A197049/b197049.txt">Table of n, a(n) for n = 0..2000</a> (terms n = 1..200 from R. H. Hardin) %H A197049 George Spahn, <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/spahn2024.pdf">Counting Maximal Seat Assignments that Obey Social Distancing</a>, Talk at Rutgers Experimental Mathematics Seminar, Feb. 1, 2024. Addresses this sequence on slides 26-32, but under incorrect A-number A157049. %H A197049 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a> %H A197049 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIndependentVertexSet.html">Maximal Independent Vertex Set</a> %H A197049 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalVertexCover.html">Minimal Vertex Cover</a> %H A197049 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,3,-1,-1). %F A197049 Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-3) -a(n-4) -a(n-5) for n>6. %F A197049 Equivalent g.f.: -(2*x^6-x^5+x^4-x^3-x^2-x-1)/(x^5+x^4-3*x^3-x^2-x+1). - _R. J. Mathar_, Oct 10 2011 %F A197049 Spahn (see link) provides a proof of the generating function. - _Hugo Pfoertner_, Apr 18 2024 %e A197049 Some solutions for n=5: %e A197049 2 0 2 0 1 1 2 0 1 0 3 0 0 3 0 0 3 0 0 2 0 %e A197049 0 4 0 1 2 0 0 2 1 3 0 2 2 0 2 2 0 3 1 1 1 %e A197049 2 0 3 2 0 3 2 1 0 0 2 1 1 1 1 1 2 0 1 0 2 %e A197049 1 2 0 0 4 0 0 2 1 1 2 0 0 3 0 0 2 1 1 2 0 %e A197049 0 1 1 2 0 2 2 0 1 1 0 2 2 0 2 2 0 1 0 1 1 %Y A197049 Column 3 of A197054. %K A197049 nonn,easy %O A197049 0,2 %A A197049 _R. H. Hardin_, Oct 09 2011 %E A197049 a(0)=1 prepended by _Alois P. Heinz_, Apr 18 2024