A197051 Number of nX5 0..4 arrays with each element equal to the number its horizontal and vertical zero neighbors.
4, 10, 38, 108, 358, 1132, 3580, 11382, 36270, 114992, 365628, 1162290, 3692624, 11733828, 37293892, 118504546, 376583590, 1196750110, 3803034578, 12085297922, 38405269512, 122045123484, 387837623386, 1232482503260, 3916616317912
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..2..0..2....1..1..0..3..0....0..3..0..3..0....0..2..1..0..2 ..2..1..0..4..0....0..2..2..0..3....3..0..3..0..2....2..0..2..2..0 ..0..1..3..0..3....3..0..2..2..0....0..2..1..1..1....1..2..0..2..1 ..1..1..0..3..0....0..3..0..1..1....1..1..0..2..0....0..1..2..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +4*a(n-2) +10*a(n-3) +4*a(n-4) -20*a(n-5) +a(n-6) -2*a(n-7) +2*a(n-8) -16*a(n-9) +4*a(n-10) +a(n-13) for n>14.
Equivalent empirical g.f.: 4*x - 2*x^2*(5+14*x+15*x^2-x^3-39*x^4-8*x^5+6*x^6-21*x^7-13*x^8-x^9+x^10+3*x^11+3*x^12) / ( -1+x+4*x^2+10*x^3+4*x^4-20*x^5+x^6-2*x^7+2*x^8-16*x^9+4*x^10+x^13 ). - R. J. Mathar, Oct 10 2011
Comments