cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197110 Decimal expansion of Pi^4/120.

This page as a plain text file.
%I A197110 #28 Mar 28 2024 10:54:00
%S A197110 8,1,1,7,4,2,4,2,5,2,8,3,3,5,3,6,4,3,6,3,7,0,0,2,7,7,2,4,0,5,8,7,5,9,
%T A197110 2,7,0,8,1,0,6,3,2,1,3,9,3,9,0,4,5,1,8,0,7,6,2,2,3,2,1,6,1,5,8,3,0,9,
%U A197110 0,4,6,2,1,4,0,2,2,6,6,3,4,9,1,7,6,8,2
%N A197110 Decimal expansion of Pi^4/120.
%C A197110 Decimal expansion of the double zeta function zeta(2,2). Not to be confused with the Hurwitz zeta function of two arguments or with the second derivative of the Riemann zeta function.
%H A197110 R. E. Crandall and J. P. Buhler, <a href="https://projecteuclid.org/euclid.em/1048515810">On the evaluation of Euler sums</a>, Exper. Math. 3 (1994), 275.
%H A197110 Wikipedia, <a href="http://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%H A197110 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A197110 Equals Sum_{n >=2} Sum_{m=1..n-1} 1/(n*m)^2.
%e A197110 0.8117424... = A164109/40 .
%p A197110 evalf(Pi^4/120) ;
%t A197110 First[RealDigits[Pi^4/120,10,100]] (* _Geoffrey Critzer_, Nov 03 2013 *)
%o A197110 (PARI) Pi^4/120 \\ _Charles R Greathouse IV_, Apr 17 2015
%o A197110 (PARI) zetamult([2,2]) \\ _Charles R Greathouse IV_, Apr 17 2015
%Y A197110 Cf. A092425, A164109.
%K A197110 cons,nonn,easy
%O A197110 0,1
%A A197110 _R. J. Mathar_, Oct 10 2011
%E A197110 More terms from _D. S. McNeil_, Oct 10 2011
%E A197110 Definition simplified by _R. J. Mathar_, Feb 05 2013