cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197129 Numbers such that the sum, sum of the squares, and sum of the cubes of the decimal digits are each a perfect square.

This page as a plain text file.
%I A197129 #20 Nov 17 2024 15:04:49
%S A197129 1,4,9,10,40,90,100,400,900,1000,1111,1224,1242,1339,1393,1422,1933,
%T A197129 2124,2142,2214,2241,2412,2421,3139,3193,3319,3391,3913,3931,4000,
%U A197129 4122,4212,4221,4444,4669,4696,4966,6469,6496,6649,6694,6946,6964,9000,9133,9313
%N A197129 Numbers such that the sum, sum of the squares, and sum of the cubes of the decimal digits are each a perfect square.
%C A197129 Each number > 90 contains at least two identical digits because the sequence A197125 contains a subset of numbers all of whose digits are distinct and are all the permutations of 1567890. But 1^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 = 1926 is not square. Consequently, it is impossible to find numbers > 90 with distinct digits in this sequence.
%H A197129 Charles R Greathouse IV, <a href="/A197129/b197129.txt">Table of n, a(n) for n = 1..10000</a>
%F A197129 A028839 INTERSECT A175396 INTERSECT A197039.
%e A197129 4669 is in the sequence because:
%e A197129 4   + 6   + 6   + 9   = 25   = 5^2;
%e A197129 4^2 + 6^2 + 6^2 + 9^2 = 169  = 13^2;
%e A197129 4^3 + 6^3 + 6^3 + 9^3 = 1225 = 35^2.
%p A197129 for n from 1 to 10000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10): n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:od:if sqrt(s1)=floor(sqrt(s1)) and sqrt(s2)=floor(sqrt(s2)) and sqrt(s3)=floor(sqrt(s3))then printf(`%d, `, n): else fi:od:
%t A197129 sdQ[n_]:=Module[{idn=IntegerDigits[n]},IntegerQ[Sqrt[Total[idn]]] && IntegerQ[Sqrt[Total[idn^2]]]&&IntegerQ[Sqrt[Total[idn^3]]]]; Select[ Range[ 10000],sdQ] (* _Harvey P. Dale_, Oct 25 2011 *)
%t A197129 psQ[n_]:=With[{idn=IntegerDigits[n]},AllTrue[{Sqrt[Total[idn]],Sqrt[Total[idn^2]],Sqrt[Total[idn^3]]},IntegerQ]]; Select[Range[10000],psQ] (* _Harvey P. Dale_, Nov 17 2024 *)
%o A197129 (PARI) is(n)=my(v=eval(Vec(Str(n))));issquare(sum(i=1,#v,v[i]))&&issquare(sum(i=1,#v,v[i]^2))&&issquare(sum(i=1,#v,v[i]^3)) \\ _Charles R Greathouse IV_, Oct 10 2011
%Y A197129 Cf. A028839, A175396, A197039, A197125.
%K A197129 nonn,base
%O A197129 1,2
%A A197129 _Michel Lagneau_, Oct 10 2011