cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197130 Sum of reflection (or absolute) lengths of all elements in the Coxeter group of type B_n.

This page as a plain text file.
%I A197130 #18 Jul 22 2025 12:53:09
%S A197130 1,10,100,1136,14816,220032,3679488,68548608,1409347584,31717048320,
%T A197130 775808778240,20499651624960,582040706088960,17674457139118080,
%U A197130 571655258741145600,19621314364126003200,712374154997583052800,27277192770051951820800
%N A197130 Sum of reflection (or absolute) lengths of all elements in the Coxeter group of type B_n.
%D A197130 P. Renteln, The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., 311 (2011), 738-755.
%H A197130 B. Foster-Greenwood, C. Kriloff, <a href="http://arxiv.org/abs/1502.07392">Spectra of Cayley Graphs of Complex Reflection Groups</a>, arXiv preprint arXiv:1502.07392, 2015
%F A197130 a(n)=Sum_{w in W(B_n)} l_T(w)=|W(B_n)|Sum_{i=1}^n (d_i-1)/d_i=2^n*n!*(1/2+3/4+...+(2n-1)/(2n)) where T=all reflections in W(B_n), l_T(1)=0 and otherwise l_T(w)=min{k|w=t_1*...*t_k for t_i in T}, and d_1,...,d_n are the degrees of W(B_n)
%e A197130 a(2)=10 since W(B_2)={1, t_1=s_1, t_2=s_2, t_3=s_1*s_2*s_1, t_4=s_2*s_1*s_2, t_1*t_2=s_1*s_2, t_2*t_1=s_2*s_1, t_1*t_4=s_1*s_2*s_1*s_2} in terms of simple reflections s_1 and s_2.
%p A197130 seq(2^n*factorial(n)*add((2*k-1)/(2*k),k=1..n),n=1..100);
%t A197130 Table[2^n*Factorial[n]*Sum[(2*k-1)/(2*k),{k,1,n}],{n,1,100}]
%o A197130 (Sage)
%o A197130 [2^n*factorial(n)*sum([(2*k-1)/(2*k) for k in [1..n]]) for n in [1..100]]
%Y A197130 Cf. A067318, A197131.
%K A197130 easy,nonn
%O A197130 1,2
%A A197130 _Cathy Kriloff_, Oct 10 2011