cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197131 Sum of the reflection (absolute) lengths of all elements in the Coxeter group of type D_n.

This page as a plain text file.
%I A197131 #15 Jul 22 2025 12:53:16
%S A197131 4,46,544,7216,108096,1816704,33951744,699512832,15765626880,
%T A197131 386046443520,10208951009280,290039357767680,8811722692362240,
%U A197131 285113464809062400,9789232245217689600,355501479519741542400,13615286053738276454400,548476851979845579571200
%N A197131 Sum of the reflection (absolute) lengths of all elements in the Coxeter group of type D_n.
%D A197131 P. Renteln, The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., 311 (2011), 738-755.
%H A197131 B. Foster-Greenwood, C. Kriloff, <a href="http://arxiv.org/abs/1502.07392">Spectra of Cayley Graphs of Complex Reflection Groups</a>, arXiv preprint arXiv:1502.07392, 2015
%F A197131 a(n)=Sum_{w in W(D_n)} l_T(w)=|W(D_n)|Sum_{i=1}^n (d_i-1)/d_i=2^(n-1)*n!*(1/2+3/4+...+(2n-3)/(2n-2)+(n-1)/n) where T=all reflections in W(D_n), l_T(1)=0 and otherwise l_T(w)=min{k|w=t_1*...*t_k for t_i in T}, and d_1,...,d_n are the degrees of W(D_n)
%e A197131 a(3)=46 because W(D_3)=W(A_3) and in sequence A067318, a(3)=46.
%p A197131 seq(2^(n-1)*factorial(n)*(add((2*k-1)/(2*k), k=1..n-1)+(n-1)/n), n=2..100);
%t A197131 Table[2^(n-1)*Factorial[n]*(Sum[(2*k-1)/(2*k),{k,1,n-1}]+(n-1)/n), {n,2,100}]
%o A197131 (Sage)
%o A197131 [2^(n-1)*factorial(n)*(sum([(2*k-1)/(2*k) for k in [1..n-1]])+(n-1)/n) for n in [2..100]]
%Y A197131 Cf. A067318, A197130
%K A197131 easy,nonn
%O A197131 2,1
%A A197131 _Cathy Kriloff_, Oct 10 2011