This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197132 #15 Nov 09 2023 15:09:37 %S A197132 1,4,16,52,157,434,1144,2862,6906,16090,36449,80430,173555,366802, %T A197132 761102,1552569,3118508,6174461,12064383,23283027,44419855,83834278, %U A197132 156626605,289839251,531534746,966483534,1743164649,3119864511,5543030861,9779552117,17139055493 %N A197132 Euler transform of composite numbers. %H A197132 Robert Israel, <a href="/A197132/b197132.txt">Table of n, a(n) for n = 0..10000</a> %H A197132 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A197132 G.f.: Product_{k>=1} (1-x^k)^-composite(k), where composite(k) = A002808(k) is the k-th composite number. %p A197132 N:= 100: # to use composites <= N %p A197132 comps:= remove(isprime,[$4..N]): %p A197132 M:= nops(comps): %p A197132 G:= mul((1-x^k)^(-comps[k]),k=1..M): %p A197132 S:= series(G, x, M+1): %p A197132 seq(coeff(S,x,j),j=0..M); # _Robert Israel_, Jan 30 2018 %t A197132 a[ns_Integer?NonNegative, nf_Integer?NonNegative] := CoefficientList[Series[Product[(1 - x^k)^-FixedPoint[k + PrimePi[#] + 1 &, k], {k, 1, nf}], {x, 0, nf}], x][[ns + 1 ;; nf + 1]]; a[0, 30] (* _Robert P. P. McKone_, Nov 08 2023 *) %Y A197132 Cf. A002808, A030009. %K A197132 nonn %O A197132 0,2 %A A197132 _Franklin T. Adams-Watters_, Oct 10 2011