This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197133 #33 Feb 12 2025 15:01:54 %S A197133 2,7,2,9,7,1,8,4,9,2,3,6,8,2,4,9,5,0,4,0,8,6,1,6,8,0,6,0,8,3,8,6,9,8, %T A197133 3,1,0,4,7,4,0,6,6,5,1,9,6,6,4,4,0,1,8,2,7,6,6,8,0,0,0,1,1,4,8,4,3,3, %U A197133 5,9,2,7,0,1,0,2,2,0,8,9,0,4,3,5,9,2,4,4,8,6,4,3,1,9,4,0,5,6,9,0,8 %N A197133 Decimal expansion of least x>0 having sin(x) = sin(2*x)^2. %C A197133 The Mathematica program includes a graph. %C A197133 Guide for least x>0 satisfying sin(b*x) = sin(c*x)^2 for selected numbers b and c: %C A197133 b.....c.......x %C A197133 1.....2.......A197133 %C A197133 1.....3.......A197134 %C A197133 1.....4.......A197135 %C A197133 1.....5.......A197251 %C A197133 1.....6.......A197252 %C A197133 1.....7.......A197253 %C A197133 1.....8.......A197254 %C A197133 2.....1.......A105199, x=arctan(2) %C A197133 2.....3.......A019679, x=Pi/12 %C A197133 2.....4.......A197255 %C A197133 2.....5.......A197256 %C A197133 2.....6.......A197257 %C A197133 2.....7.......A197258 %C A197133 2.....8.......A197259 %C A197133 3.....1.......A197260 %C A197133 3.....2.......A197261 %C A197133 3.....4.......A197262 %C A197133 3.....5.......A197263 %C A197133 3.....6.......A197264 %C A197133 3.....7.......A197265 %C A197133 3.....8.......A197266 %C A197133 4.....1.......A197267 %C A197133 4.....2.......A195693, x=arctan(1/(golden ratio)) %C A197133 4.....3.......A197268 %C A197133 1.....4*Pi....A197522 %C A197133 1.....3*Pi....A197571 %C A197133 1.....2*Pi....A197572 %C A197133 1.....3*Pi/2..A197573 %C A197133 1.....Pi......A197574 %C A197133 1.....Pi/2....A197575 %C A197133 1.....Pi/3....A197326 %C A197133 1.....Pi/4....A197327 %C A197133 1.....Pi/6....A197328 %C A197133 2.....Pi/3....A197329 %C A197133 2.....Pi/4....A197330 %C A197133 2.....Pi/6....A197331 %C A197133 3.....Pi/3....A197332 %C A197133 3.....Pi/6....A197375 %C A197133 3.....Pi/4....A197333 %C A197133 1.....1/2.....A197376 %C A197133 1.....1/3.....A197377 %C A197133 1.....2/3.....A197378 %C A197133 Pi....1.......A197576 %C A197133 Pi....2.......A197577 %C A197133 Pi....3.......A197578 %C A197133 2*Pi..1.......A197585 %C A197133 3*Pi..1.......A197586 %C A197133 4*Pi..1.......A197587 %C A197133 Pi/2..1.......A197579 %C A197133 Pi/2..2.......A197580 %C A197133 Pi/2..1/2.....A197581 %C A197133 Pi/3..Pi/4....A197379 %C A197133 Pi/3..Pi/6....A197380 %C A197133 Pi/4..Pi/3....A197381 %C A197133 Pi/4..Pi/6....A197382 %C A197133 Pi/6..Pi/3....A197383 %C A197133 Pi/6..Pi/4..........., x=1 %C A197133 Pi/3..1.......A197384 %C A197133 Pi/3..2.......A197385 %C A197133 Pi/3..3.......A197386 %C A197133 Pi/3..1/2.....A197387 %C A197133 Pi/3..1/3.....A197388 %C A197133 Pi/3..2/3.....A197389 %C A197133 Pi/4..1.......A197390 %C A197133 Pi/4..2.......A197391 %C A197133 Pi/4..3.......A197392 %C A197133 Pi/4..1/2.....A197393 %C A197133 Pi/4..1/3.....A197394 %C A197133 Pi/4..2/3.....A197411 %C A197133 Pi/4..1/4.....A197412 %C A197133 Pi/6..1.......A197413 %C A197133 Pi/6..2.......A197414 %C A197133 Pi/6..3.......A197415 %C A197133 Pi/6..1/2.....A197416 %C A197133 Pi/6..1/3.....A197417 %C A197133 Pi/6..2/3.....A197418 %C A197133 Cf. A197476 for a similar table for sin(b*x) = sin(c*x)^2. %H A197133 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A197133 From _Gleb Koloskov_, Sep 15 2021: (Start) %F A197133 Equals arcsin(2*sin(arcsin(3*sqrt(3)/8)/3)/sqrt(3)) %F A197133 = arcsin(2*sin(arcsin(A333322)/3)/A002194). (End) %e A197133 0.272971849236824950408616... %t A197133 b = 1; c = 2; f[x_] := Sin[x] %t A197133 t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .3}, WorkingPrecision -> 100] %t A197133 RealDigits[t] (* A197133 *) %t A197133 Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi}] %t A197133 (* Second program: *) %t A197133 RealDigits[ ArcSec[ Root[16 - 16 x^2 + x^6, 3]], 10, 100] // First (* _Jean-François Alcover_, Feb 19 2013 *) %o A197133 (PARI) asin(2*sin(asin(3*sqrt(3)/8)/3)/sqrt(3)) \\ _Gleb Koloskov_, Sep 15 2021 %o A197133 (PARI) asin(polrootsreal(4*x^3-4*x+1)[2]) \\ _Charles R Greathouse IV_, Feb 12 2025 %Y A197133 Cf. A002194, A197134, A197476 (cos), A333322. %K A197133 nonn,cons %O A197133 0,1 %A A197133 _Clark Kimberling_, Oct 12 2011 %E A197133 Edited and a(99) corrected by _Georg Fischer_, Jul 28 2021