This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197144 #6 Mar 30 2012 18:57:52 %S A197144 3,8,2,8,9,1,1,1,4,1,5,4,2,9,4,3,6,5,3,2,1,9,8,8,2,2,4,1,3,9,6,4,8,6, %T A197144 7,2,1,7,2,4,4,5,0,5,3,9,0,2,8,4,8,7,2,0,0,6,8,2,2,8,6,6,4,6,4,8,7,9, %U A197144 4,9,4,6,6,2,6,1,3,2,4,9,7,5,7,1,7,5,9,4,6,9,1,5,9,2,6,0,8,4,5,7 %N A197144 Decimal expansion of the x-intercept of the shortest segment from the x axis through (3,1) to the line y=2x. %C A197144 The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197032, A197008 and A195284. %e A197144 length of Philo line: 3.7423891424451...; see A197145 %e A197144 endpoint on x axis: (3.82891, 0) %e A197144 endpoint on line y=2x: (1.44062, 2.88124) %t A197144 f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2; %t A197144 g[t_] := D[f[t], t]; Factor[g[t]] %t A197144 p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3 %t A197144 m = 2; h = 3; k = 1;(* slope m, point (h,k) *) %t A197144 t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100] %t A197144 RealDigits[t] (* A197144 *) %t A197144 {N[t], 0} (* endpoint on x axis *) %t A197144 {N[k*t/(k + m*t - m*h)], %t A197144 N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=2x *) %t A197144 d = N[Sqrt[f[t]], 100] %t A197144 RealDigits[d] (* A197145 *) %t A197144 Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 4}], %t A197144 ContourPlot[(x - h)^2 + (y - k)^2 == .002, {x, 0, 4}, {y, 0, 3}], PlotRange -> {0, 3}, AspectRatio -> Automatic] %Y A197144 Cf. A197032, A197145, A197008, A195284. %K A197144 nonn,cons %O A197144 1,1 %A A197144 _Clark Kimberling_, Oct 11 2011