A197147 Decimal expansion of the shortest distance from the x axis through (4,1) to the line y=2x.
4, 7, 0, 8, 0, 0, 0, 0, 1, 7, 4, 9, 6, 4, 6, 0, 2, 7, 3, 9, 3, 1, 7, 3, 5, 6, 4, 4, 1, 0, 5, 4, 5, 3, 5, 3, 3, 8, 5, 0, 6, 9, 2, 6, 7, 9, 9, 5, 1, 2, 9, 0, 8, 3, 1, 2, 1, 0, 9, 5, 6, 9, 5, 1, 9, 1, 4, 2, 6, 9, 5, 3, 3, 3, 0, 7, 7, 9, 3, 1, 2, 8, 6, 3, 1, 3, 7, 8, 1, 7, 5, 8, 5, 6, 3, 2, 3, 5, 5
Offset: 1
Examples
length of Philo line: 4.708000017496.. endpoint on x axis: (4.92546, 0); see A197146 endpoint on line y=2x: (1.72768, 3.45536)
Programs
-
Mathematica
f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2; g[t_] := D[f[t], t]; Factor[g[t]] p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3 m = 2; h = 4; k = 1; (* slope m, point (h,k) *) t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A197146 *) {N[t], 0} (* endpoint on x axis *) {N[k*t/(k + m*t - m*h)], N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=2x *) d = N[Sqrt[f[t]], 100] RealDigits[d] (* A197147 *) Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 5}], ContourPlot[(x - h)^2 + (y - k)^2 == .004, {x, 0, 5}, {y, 0, 3}], PlotRange -> {0, 4}, AspectRatio -> Automatic]
Comments