This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197148 #6 Mar 30 2012 18:57:52 %S A197148 1,6,0,4,7,9,3,6,1,8,4,6,2,1,3,9,9,0,7,3,7,8,3,1,7,9,5,0,7,1,7,9,6,1, %T A197148 8,4,6,7,1,5,4,4,9,2,1,9,9,9,1,2,8,6,0,7,7,8,6,3,6,2,9,2,2,1,4,9,2,1, %U A197148 6,3,7,2,6,1,9,1,2,6,0,4,2,1,6,6,7,9,9,7,0,2,2,8,4,7,0,1,4,7,7,2 %N A197148 Decimal expansion of the x-intercept of the shortest segment from the x axis through (1,1) to the line y=3x. %C A197148 The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T. For discussions and guides to related sequences, see A197032, A197008 and A195284. %e A197148 length of Philo line: 1.999158399580...; see A197149 %e A197148 endpoint on x axis: (1.60479, 0) %e A197148 endpoint on line y=3x: (0.570212, 1.71064) %t A197148 f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2; %t A197148 g[t_] := D[f[t], t]; Factor[g[t]] %t A197148 p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3 %t A197148 m = 3; h = 1; k = 1;(* slope m, point (h,k) *) %t A197148 t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100] %t A197148 RealDigits[t] (* A197148 *) %t A197148 {N[t], 0} (* endpoint on x axis *) %t A197148 {N[k*t/(k + m*t - m*h)], %t A197148 N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=3x *) %t A197148 d = N[Sqrt[f[t]], 100] %t A197148 RealDigits[d] (* A197149 *) %t A197148 Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 2}], %t A197148 ContourPlot[(x - h)^2 + (y - k)^2 == .001, {x, 0, 4}, {y, 0, 3}], PlotRange -> {0, 2}, AspectRatio -> Automatic] %Y A197148 Cf. A197032, A197149, A197008, A195284. %K A197148 nonn,cons %O A197148 1,2 %A A197148 _Clark Kimberling_, Oct 11 2011