This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197184 #10 Mar 30 2012 17:40:29 %S A197184 1,-1,1,-1,-1,1,7,-2,-1,1,-13,12,-3,-1,1,-17,-22,18,-4,-1,1,199,-45, %T A197184 -35,25,-5,-1,1,-605,465,-84,-53,33,-6,-1,1,-225,-1449,910,-133,-77, %U A197184 42,-7,-1,1,11703,-864,-3094,1594,-190,-108,52,-8,-1,1,-59317,33780,-1380,-6027,2583,-252,-147,63,-9,-1,1,83143,-179398,78567,-771,-10899,3948,-315,-195,75,-10,-1,1,991671,271073,-461978,159115,2882,-18546,5764,-374,-253,88,-11,-1,1 %N A197184 Triangle of polynomial coefficients of the polynomial factors defined in A074051. %C A197184 The triangle T(n,k), 0<=k<n, shows the coefficients [x^k] of the polynomial p_n(x) which distributes sum_{i=1..m} i^n*(i+1)! = A074052(n) + A074051(n)*sum_{i=1..m} (i+1)! + p_n(m) *(m+2)!. %F A197184 A074052(n) + 2*A074051(n) + 6*p_n(1) = 2. - R. J. Mathar, Oct 13 2011 %F A197184 (x+2)*p_n(x)-p_n(x-1) = x^n-A074051(n). - R. J. Mathar, Oct 13 2011 %F A197184 Conjectures on p_n(x)= sum_{k=0..n-1} T(n,k)*x^k: %F A197184 T(n,n-1) = 1. %F A197184 T(n,n-2) = -1. %F A197184 T(n,n-3) = -(n-2). %F A197184 T(n,n-4) = A055998(n-2). %F A197184 T(n,n-5) = -(n-2)*(n^2-4*n+21)/6. %F A197184 T(n,n-6) = (n-5)*(n-2)*(n^2-19*n-24)/24. %e A197184 1; 1 %e A197184 -1,1; -1+x %e A197184 -1,-1,1; -1-x+x^2 %e A197184 7,-2,-1,1; 7-2*x-x^2+x^3 %e A197184 -13,12,-3,-1,1; -13+12*x-3*x^2-x^3+x^4 %e A197184 -17,-22,18,-4,-1,1; -17-22*x+18*x^2-4*x^3-x^4+x^5 %K A197184 sign,tabl %O A197184 1,7 %A A197184 _R. J. Mathar_, Oct 11 2011