cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197184 Triangle of polynomial coefficients of the polynomial factors defined in A074051.

This page as a plain text file.
%I A197184 #10 Mar 30 2012 17:40:29
%S A197184 1,-1,1,-1,-1,1,7,-2,-1,1,-13,12,-3,-1,1,-17,-22,18,-4,-1,1,199,-45,
%T A197184 -35,25,-5,-1,1,-605,465,-84,-53,33,-6,-1,1,-225,-1449,910,-133,-77,
%U A197184 42,-7,-1,1,11703,-864,-3094,1594,-190,-108,52,-8,-1,1,-59317,33780,-1380,-6027,2583,-252,-147,63,-9,-1,1,83143,-179398,78567,-771,-10899,3948,-315,-195,75,-10,-1,1,991671,271073,-461978,159115,2882,-18546,5764,-374,-253,88,-11,-1,1
%N A197184 Triangle of polynomial coefficients of the polynomial factors defined in A074051.
%C A197184 The triangle T(n,k), 0<=k<n, shows the coefficients [x^k] of the polynomial p_n(x) which distributes sum_{i=1..m} i^n*(i+1)! = A074052(n) + A074051(n)*sum_{i=1..m} (i+1)! + p_n(m) *(m+2)!.
%F A197184 A074052(n) + 2*A074051(n) + 6*p_n(1) = 2. - R. J. Mathar, Oct 13 2011
%F A197184 (x+2)*p_n(x)-p_n(x-1) = x^n-A074051(n). - R. J. Mathar, Oct 13 2011
%F A197184 Conjectures on p_n(x)= sum_{k=0..n-1} T(n,k)*x^k:
%F A197184 T(n,n-1) = 1.
%F A197184 T(n,n-2) = -1.
%F A197184 T(n,n-3) = -(n-2).
%F A197184 T(n,n-4) = A055998(n-2).
%F A197184 T(n,n-5) = -(n-2)*(n^2-4*n+21)/6.
%F A197184 T(n,n-6) = (n-5)*(n-2)*(n^2-19*n-24)/24.
%e A197184 1;   1
%e A197184 -1,1;  -1+x
%e A197184 -1,-1,1;  -1-x+x^2
%e A197184 7,-2,-1,1;  7-2*x-x^2+x^3
%e A197184 -13,12,-3,-1,1;  -13+12*x-3*x^2-x^3+x^4
%e A197184 -17,-22,18,-4,-1,1;   -17-22*x+18*x^2-4*x^3-x^4+x^5
%K A197184 sign,tabl
%O A197184 1,7
%A A197184 _R. J. Mathar_, Oct 11 2011