cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197187 The Riemann primes of the psi type and index 3.

This page as a plain text file.
%I A197187 #20 Dec 03 2018 12:57:00
%S A197187 2,3,5,7,11,13,17,29,59,67,97,103,149,151,233,251,277,311,313,479,643,
%T A197187 719,919,967,1039,1373,1489,1553,1847,1973,1979,2663,2953,3323,3677,
%U A197187 3691,4651,4663,4789
%N A197187 The Riemann primes of the psi type and index 3.
%C A197187 The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |psi(p^3)-p^3|, where psi(p) is the Chebyshev psi function.
%H A197187 M. Planat and P. Solé, <a href="http://arxiv.org/abs/1109.6489">Efficient prime counting and the Chebyshev primes</a>, arXiv:1109.6489 [math.NT], 2011.
%t A197187 ChebyshevPsi[n_] := Range[n] // MangoldtLambda // Total;
%t A197187 Reap[For[max=0; p=2, p < 1000, p = NextPrime[p], f = Abs[ChebyshevPsi[p^3] - p^3]; If[f > max, max = f; Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Dec 03 2018 *)
%o A197187 (Perl) use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_psi($_**3)-$_**3); if ($f > $max) { say; $max=$f; } } 1000; # _Dana Jacobsen_, Dec 28 2015
%Y A197187 Cf. A196669, A197185, A197186, A197188.
%K A197187 nonn,more
%O A197187 1,1
%A A197187 _Michel Planat_, Oct 11 2011
%E A197187 More terms from _Dana Jacobsen_, Dec 28 2015