This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197187 #20 Dec 03 2018 12:57:00 %S A197187 2,3,5,7,11,13,17,29,59,67,97,103,149,151,233,251,277,311,313,479,643, %T A197187 719,919,967,1039,1373,1489,1553,1847,1973,1979,2663,2953,3323,3677, %U A197187 3691,4651,4663,4789 %N A197187 The Riemann primes of the psi type and index 3. %C A197187 The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |psi(p^3)-p^3|, where psi(p) is the Chebyshev psi function. %H A197187 M. Planat and P. Solé, <a href="http://arxiv.org/abs/1109.6489">Efficient prime counting and the Chebyshev primes</a>, arXiv:1109.6489 [math.NT], 2011. %t A197187 ChebyshevPsi[n_] := Range[n] // MangoldtLambda // Total; %t A197187 Reap[For[max=0; p=2, p < 1000, p = NextPrime[p], f = Abs[ChebyshevPsi[p^3] - p^3]; If[f > max, max = f; Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Dec 03 2018 *) %o A197187 (Perl) use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_psi($_**3)-$_**3); if ($f > $max) { say; $max=$f; } } 1000; # _Dana Jacobsen_, Dec 28 2015 %Y A197187 Cf. A196669, A197185, A197186, A197188. %K A197187 nonn,more %O A197187 1,1 %A A197187 _Michel Planat_, Oct 11 2011 %E A197187 More terms from _Dana Jacobsen_, Dec 28 2015