This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197208 #15 Mar 30 2021 12:03:00 %S A197208 3,12,12,30,120,30,60,600,600,60,105,2100,5250,2100,105,168,5880, %T A197208 29400,29400,5880,168,252,14112,123480,246960,123480,14112,252,360, %U A197208 30240,423360,1481760,1481760,423360,30240,360,495,59400,1247400,6985440,12224520,6985440,1247400,59400,495 %N A197208 Triangular array: T(n,k) = sqrt(C(n-1,k-1)*C(n-1,k)*C(n,k+1)* C(n+1,k+1)*C(n+1,k)*C(n,k-1)), where C(n,k) = binomial(n,k). %C A197208 In Pascal's triangle, the product of the six entries surrounding C(n,k) is a perfect square. %C A197208 ............................................. %C A197208 ..............C(n-1,k-1)____C(n-1,k)......... %C A197208 .............../.................\........... %C A197208 ............C(n,k-1)...C(n,k)....C(n,k+1).... %C A197208 ...............\................./........... %C A197208 ..............C(n+1,k)______C(n+1,k+1)....... %C A197208 ............................................. %C A197208 In fact, C(n-1,k-1)*C(n,k+1)*C(n+1,k) = C(n-1,k)*C(n+1,k+1)*C(n,k-1). %H A197208 Seiichi Manyama, <a href="/A197208/b197208.txt">Rows n = 2..141, flattened</a> %F A197208 T(n,k) = sqrt(C(n-1,k-1)*C(n-1,k)*C(n,k+1)*C(n+1,k+1)*C(n+1,k)* C(n,k-1)). %F A197208 T(n,k) = C(n-1,k-1)*C(n,k+1)*C(n+1,k) = C(n-1,k)*C(n+1,k+1)*C(n,k-1). %F A197208 T(n,k) = 1/2*(n^3-n)*A056939(n-2,k-1), for n >= 2 and 1 <= k <= n-1. %F A197208 Row sums are A197209. %e A197208 .n\k.|....1......2......3......4......5......6 %e A197208 = = = = = = = = = = = = = = = = = = = = = = = = %e A197208 ..2..|....3... %e A197208 ..3..|...12.....12 %e A197208 ..4..|...30....120.....30 %e A197208 ..5..|...60....600....600.....60 %e A197208 ..6..|..105...2100...5250...2100....105 %e A197208 ..7..|..168...5880..29400..29400...5880....168 %e A197208 ... %e A197208 T(4,3) = sqrt(1*3*6*10*5*1) = sqrt(900) = 30 %e A197208 ..............1.............. %e A197208 ............1...1............ %e A197208 ..........1...2...1.......... %e A197208 ........1...3...3____1....... %e A197208 .............../......\...... %e A197208 ......1...4...6...4....1..... %e A197208 ...............\....../...... %e A197208 ...1...5...10...10___5.....1. %Y A197208 Cf. A007318, A056939, A197209 (row sums). %K A197208 nonn,easy,tabl %O A197208 2,1 %A A197208 _Peter Bala_, Oct 12 2011