cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197261 Decimal expansion of least x>0 having sin(3x) = sin(2x)^2.

This page as a plain text file.
%I A197261 #16 Feb 12 2025 16:57:16
%S A197261 6,5,0,2,4,0,6,1,8,2,1,7,6,1,8,1,9,2,0,9,5,5,5,5,1,7,2,7,3,4,6,7,0,5,
%T A197261 1,4,8,8,1,6,7,2,1,1,4,3,0,9,4,0,6,0,7,6,9,4,8,4,8,6,7,4,7,8,6,7,8,6,
%U A197261 3,3,2,9,0,5,2,3,5,6,7,7,7,5,0,5,1,8,0,1,1,8,3,8,6,6,6,8,0,2,8,1
%N A197261 Decimal expansion of least x>0 having sin(3x) = sin(2x)^2.
%C A197261 The Mathematica program includes a graph.  See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.
%H A197261 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A197261 Equals arcsin((1+4*cos((Pi+arccos(37/64))/3))/3). - _Gleb Koloskov_, Sep 15 2021
%e A197261 0.650240618217618192095555172734670514...
%t A197261 b = 3; c = 2; f[x_] := Sin[x]
%t A197261 t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .5, .7}, WorkingPrecision -> 100]
%t A197261 RealDigits[t] (* A197261 *)
%t A197261 Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi/2}]
%o A197261 (PARI) asin((1+4*cos((Pi+acos(37/64))/3))/3) \\ _Gleb Koloskov_, Sep 15 2021
%Y A197261 Cf. A197133.
%K A197261 nonn,cons
%O A197261 0,1
%A A197261 _Clark Kimberling_, Oct 12 2011