cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197297 The Riemann primes of the theta type and index 1.

This page as a plain text file.
%I A197297 #22 Jul 07 2025 15:41:01
%S A197297 2,5,7,11,17,29,37,41,53,59,97,127,137,149,191,223,307,331,337,347,
%T A197297 419,541,557,809,967,1009,1213,1277,1399,1409,1423,1973,2203,2237,
%U A197297 2591,2609,2617,2633,2647,2657,3163,3299,4861,4871,4889,4903,4931,5381,7411
%N A197297 The Riemann primes of the theta type and index 1.
%C A197297 The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |theta(p)-p|, where theta(p) is the Chebyshev theta function.
%H A197297 Dana Jacobsen, <a href="/A197297/b197297.txt">Table of n, a(n) for n = 1..744</a>
%H A197297 Michel Planat and Patrick Solé, <a href="http://arxiv.org/abs/1109.6489">Efficient prime counting and the Chebyshev primes</a>, arXiv:1109.6489 [math.NT], 2011.
%H A197297 L. Schoenfeld, <a href="http://dx.doi.org/10.1090/S0025-5718-1976-0457374-X">Sharper bounds for the Chebyshev functions theta(x) and psi(x). II</a>, Math. Comp. 30 (1976) 337-360.
%o A197297 (Perl) use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_theta($_)-$_); if ($f > $max) { say; $max=$f; } } 10000; # _Dana Jacobsen_, Dec 29 2015
%Y A197297 Cf. A028388, A196667, A197185, A215013.
%Y A197297 Equivalent sequences for other indices: A197298(2), A197299(3), A197300(4).
%K A197297 nonn
%O A197297 1,1
%A A197297 _Michel Planat_, Oct 13 2011