This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197297 #22 Jul 07 2025 15:41:01 %S A197297 2,5,7,11,17,29,37,41,53,59,97,127,137,149,191,223,307,331,337,347, %T A197297 419,541,557,809,967,1009,1213,1277,1399,1409,1423,1973,2203,2237, %U A197297 2591,2609,2617,2633,2647,2657,3163,3299,4861,4871,4889,4903,4931,5381,7411 %N A197297 The Riemann primes of the theta type and index 1. %C A197297 The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |theta(p)-p|, where theta(p) is the Chebyshev theta function. %H A197297 Dana Jacobsen, <a href="/A197297/b197297.txt">Table of n, a(n) for n = 1..744</a> %H A197297 Michel Planat and Patrick Solé, <a href="http://arxiv.org/abs/1109.6489">Efficient prime counting and the Chebyshev primes</a>, arXiv:1109.6489 [math.NT], 2011. %H A197297 L. Schoenfeld, <a href="http://dx.doi.org/10.1090/S0025-5718-1976-0457374-X">Sharper bounds for the Chebyshev functions theta(x) and psi(x). II</a>, Math. Comp. 30 (1976) 337-360. %o A197297 (Perl) use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_theta($_)-$_); if ($f > $max) { say; $max=$f; } } 10000; # _Dana Jacobsen_, Dec 29 2015 %Y A197297 Cf. A028388, A196667, A197185, A215013. %Y A197297 Equivalent sequences for other indices: A197298(2), A197299(3), A197300(4). %K A197297 nonn %O A197297 1,1 %A A197297 _Michel Planat_, Oct 13 2011