cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197317 T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 0,1,1,0,0 for x=0,1,2,3,4.

This page as a plain text file.
%I A197317 #7 Jun 02 2025 04:50:45
%S A197317 1,1,1,2,0,2,1,3,3,1,2,2,5,2,2,4,9,10,10,9,4,2,6,128,160,128,6,2,4,27,
%T A197317 79,152,152,79,27,4,8,18,249,790,1033,790,249,18,8,4,83,662,2724,4780,
%U A197317 4780,2724,662,83,4,8,56,2767,6242,24903,24704,24903,6242,2767,56,8,16,257
%N A197317 T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 0,1,1,0,0 for x=0,1,2,3,4.
%C A197317 Every 0 is next to 0 0's, every 1 is next to 1 1's, every 2 is next to 2 1's, every 3 is next to 3 0's, every 4 is next to 4 0's
%C A197317 Table starts
%C A197317 .1..1....2.....1.......2........4..........2...........4.............8
%C A197317 .1..0....3.....2.......9........6.........27..........18............83
%C A197317 .2..3....5....10.....128.......79........249.........662..........2767
%C A197317 .1..2...10...160.....152......790.......2724........6242.........26422
%C A197317 .2..9..128...152....1033.....4780......24903......113774........553807
%C A197317 .4..6...79...790....4780....24704.....189212.....1400102.......8813744
%C A197317 .2.27..249..2724...24903...189212....2241018....20425821.....208960627
%C A197317 .4.18..662..6242..113774..1400102...20425821...282284587....3980881442
%C A197317 .8.83.2767.26422..553807..8813744..208960627..3980881442...82874179361
%C A197317 .4.56.3969.91756.2751427.62844698.1984221109.55455223337.1594105273961
%H A197317 R. H. Hardin, <a href="/A197317/b197317.txt">Table of n, a(n) for n = 1..180</a>
%e A197317 Some solutions containing all values 0 to 4 for n=6 k=4
%e A197317 ..0..1..1..2....0..1..1..0....1..1..2..0....0..1..1..0....0..1..1..0
%e A197317 ..3..0..2..1....1..2..0..3....0..2..1..1....3..0..2..1....3..0..2..1
%e A197317 ..0..4..0..1....1..0..4..0....3..0..3..0....0..4..0..1....0..4..0..1
%e A197317 ..3..0..3..0....0..4..0..1....0..4..0..1....3..0..3..0....1..0..4..0
%e A197317 ..0..2..1..1....3..0..2..1....3..0..2..1....0..2..1..1....1..2..0..3
%e A197317 ..1..1..2..0....0..1..1..0....0..1..1..2....1..1..2..0....2..1..1..0
%Y A197317 Column 1 is A060547(n-2)
%K A197317 nonn,tabl
%O A197317 1,4
%A A197317 _R. H. Hardin_ Oct 13 2011