This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197354 #24 Jan 19 2019 08:48:05 %S A197354 0,1,3,4,5,6,8,9,7,8,10,11,12,13,15,16,9,10,12,13,14,15,17,18,16,17, %T A197354 19,20,21,22,24,25,11,12,14,15,16,17,19,20,18,19,21,22,23,24,26,27,20, %U A197354 21,23,24,25,26,28,29,27,28,30,31,32,33,35,36,13,14,16 %N A197354 a(n) = Sum_{k>=0} A030308(n,k)*(2k+1). %C A197354 For any k >= 0, A000700(k) equals the number of occurrences of k in the sequence. - _Rémy Sigrist_, Jan 19 2019 %H A197354 Rémy Sigrist, <a href="/A197354/b197354.txt">Table of n, a(n) for n = 0..8192</a> %F A197354 a(2^n-1) = n^2. %F A197354 a(n) mod 2 = A010060(n). %F A197354 G.f.: (1/(1 - x))*Sum_{k>=0} (2*k + 1)*x^(2^k)/(1 + x^(2^k)). - _Ilya Gutkovskiy_, Jul 23 2017 %o A197354 (PARI) a(n) = my (b=Vecrev(binary(n))); sum(i=1, #b, if (b[i], 2*i-1, 0)) \\ _Rémy Sigrist_, Jan 19 2019 %Y A197354 Cf. A000700, A005408, A030308. %Y A197354 Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A029931 (natural numbers), A059590 (factorials), A089625 (primes). %K A197354 easy,nonn %O A197354 0,3 %A A197354 _Philippe Deléham_, Oct 14 2011