This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197366 #19 Oct 23 2024 00:53:52 %S A197366 1,2,1,2,1,2,0,3,1,2,1,2,0,1,1,4,0,3,0,3,1,1,1,3,0,1,1,1,1,2,0,5,1,0, %T A197366 1,5,0,0,1,3,1,1,0,3,0,1,0,5,0,1,1,1,1,3,1,3,0,1,0,2,0,0,1,5,1,1,0,1, %U A197366 1,1,0,6,0,1,1,0,0,2,0,5,1,1,1,2,0,1 %N A197366 Number of Abelian groups of order 2n which are isomorphic with the group of units of the ring Z/kZ for some k. %F A197366 a(n) = A101872(n) - A179229(n). %o A197366 (GAP) %o A197366 B:=[]; LoadPackage("sonata"); %o A197366 for m in [1..86] do %o A197366 n := 2*m; S:=[]; %o A197366 for i in DivisorsInt(n)+1 do %o A197366 if IsPrime(i)=true then %o A197366 S:=Concatenation(S,[i]); %o A197366 fi; %o A197366 od; %o A197366 T:=[]; %o A197366 for k in [1..Size(S)] do %o A197366 T:=Concatenation(T,[S[k]/(S[k]-1)]); %o A197366 od; %o A197366 max := n*Product(T); R:=[]; %o A197366 for r in [1..Int(max)] do %o A197366 if Phi(r)=n then %o A197366 R:=Concatenation(R,[r]); %o A197366 fi; %o A197366 od; %o A197366 A:=[]; %o A197366 for t in [1..NrSmallGroups(n)] do %o A197366 if IsAbelian(SmallGroup(n,t))=true then %o A197366 A:=Concatenation(A,[SmallGroup(n,t)]); %o A197366 fi; %o A197366 od; %o A197366 U:=[]; %o A197366 for s in [1..Size(R)] do %o A197366 U:=Concatenation(U,[Units(Integers mod R[s])]); %o A197366 od; %o A197366 V:=[]; %o A197366 for v in [1..Size(A)] do %o A197366 for w in [1..Size(U)] do %o A197366 if IsIsomorphicGroup(A[v],U[w])=true then %o A197366 V:=Concatenation(V,[v]); %o A197366 break; %o A197366 fi; %o A197366 od; %o A197366 od; %o A197366 B:=Concatenation(B,[Size(V)]); %o A197366 od; %o A197366 Print(B); # _Miles Englezou_, Oct 22 2024 %Y A197366 Cf. A101872, A179229. %K A197366 nonn %O A197366 1,2 %A A197366 _Artur Jasinski_, Oct 14 2011 %E A197366 Name corrected by _Andrey Zabolotskiy_, Oct 21 2024 %E A197366 Terms a(17) onwards from _Miles Englezou_, Oct 22 2024