cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197366 Number of Abelian groups of order 2n which are isomorphic with the group of units of the ring Z/kZ for some k.

This page as a plain text file.
%I A197366 #19 Oct 23 2024 00:53:52
%S A197366 1,2,1,2,1,2,0,3,1,2,1,2,0,1,1,4,0,3,0,3,1,1,1,3,0,1,1,1,1,2,0,5,1,0,
%T A197366 1,5,0,0,1,3,1,1,0,3,0,1,0,5,0,1,1,1,1,3,1,3,0,1,0,2,0,0,1,5,1,1,0,1,
%U A197366 1,1,0,6,0,1,1,0,0,2,0,5,1,1,1,2,0,1
%N A197366 Number of Abelian groups of order 2n which are isomorphic with the group of units of the ring Z/kZ for some k.
%F A197366 a(n) = A101872(n) - A179229(n).
%o A197366 (GAP)
%o A197366 B:=[]; LoadPackage("sonata");
%o A197366 for m in [1..86] do
%o A197366     n := 2*m; S:=[];
%o A197366     for i in DivisorsInt(n)+1 do
%o A197366         if IsPrime(i)=true then
%o A197366             S:=Concatenation(S,[i]);
%o A197366         fi;
%o A197366     od;
%o A197366     T:=[];
%o A197366     for k in [1..Size(S)] do
%o A197366         T:=Concatenation(T,[S[k]/(S[k]-1)]);
%o A197366     od;
%o A197366     max := n*Product(T); R:=[];
%o A197366     for r in [1..Int(max)] do
%o A197366         if Phi(r)=n then
%o A197366             R:=Concatenation(R,[r]);
%o A197366         fi;
%o A197366     od;
%o A197366     A:=[];
%o A197366     for t in [1..NrSmallGroups(n)] do
%o A197366         if IsAbelian(SmallGroup(n,t))=true then
%o A197366             A:=Concatenation(A,[SmallGroup(n,t)]);
%o A197366         fi;
%o A197366     od;
%o A197366     U:=[];
%o A197366     for s in [1..Size(R)] do
%o A197366         U:=Concatenation(U,[Units(Integers mod R[s])]);
%o A197366     od;
%o A197366     V:=[];
%o A197366     for v in [1..Size(A)] do
%o A197366         for w in [1..Size(U)] do
%o A197366             if IsIsomorphicGroup(A[v],U[w])=true then
%o A197366                 V:=Concatenation(V,[v]);
%o A197366                 break;
%o A197366             fi;
%o A197366         od;
%o A197366     od;
%o A197366     B:=Concatenation(B,[Size(V)]);
%o A197366 od;
%o A197366 Print(B); # _Miles Englezou_, Oct 22 2024
%Y A197366 Cf. A101872, A179229.
%K A197366 nonn
%O A197366 1,2
%A A197366 _Artur Jasinski_, Oct 14 2011
%E A197366 Name corrected by _Andrey Zabolotskiy_, Oct 21 2024
%E A197366 Terms a(17) onwards from _Miles Englezou_, Oct 22 2024