This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197446 #7 Jun 02 2025 04:55:18 %S A197446 4,36,474,4837,52117,585194,6455759,71202438,787298158,8700460833, %T A197446 96129107870,1062244177133,11737953179188,129703872646573, %U A197446 1433228960340464,15837211757913841,175001375414696401 %N A197446 Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,1,1,0,0 for x=0,1,2,3,4. %C A197446 Every 0 is next to 0 2's, every 1 is next to 1 1's, every 2 is next to 2 1's, every 3 is next to 3 0's, every 4 is next to 4 0's %C A197446 Column 4 of A197450 %H A197446 R. H. Hardin, <a href="/A197446/b197446.txt">Table of n, a(n) for n = 1..210</a> %F A197446 Empirical: a(n) = 5*a(n-1) +43*a(n-2) +266*a(n-3) +239*a(n-4) -1960*a(n-5) -10352*a(n-6) -9192*a(n-7) +37799*a(n-8) +105029*a(n-9) -18744*a(n-10) -238355*a(n-11) -126539*a(n-12) +355537*a(n-13) +283213*a(n-14) -719109*a(n-15) -385554*a(n-16) +828862*a(n-17) +1313412*a(n-18) -2023532*a(n-19) -2243258*a(n-20) +1255883*a(n-21) +1718260*a(n-22) -1386751*a(n-23) -2333466*a(n-24) +1949938*a(n-25) +3566040*a(n-26) -4067978*a(n-27) -123658*a(n-28) +2185717*a(n-29) +1568417*a(n-30) -1624352*a(n-31) -2532073*a(n-32) +4246890*a(n-33) -1297116*a(n-34) -1336520*a(n-35) +1883451*a(n-36) -1106741*a(n-37) +813615*a(n-38) -847011*a(n-39) -13406*a(n-40) +890240*a(n-41) -936883*a(n-42) +427611*a(n-43) +113100*a(n-44) -369138*a(n-45) +191138*a(n-46) +24776*a(n-47) -53551*a(n-48) +9522*a(n-49) +1877*a(n-50) +85*a(n-51) -54*a(n-52) +36*a(n-53) for n>56 %e A197446 Some solutions containing all values 0 to 4 for n=5 %e A197446 ..0..1..1..2....0..0..1..1....0..3..0..0....0..0..0..0....0..0..0..0 %e A197446 ..3..0..0..1....0..4..0..0....3..0..4..0....3..0..4..0....0..4..0..0 %e A197446 ..0..0..0..1....3..0..3..0....0..0..0..1....0..0..0..1....0..0..3..0 %e A197446 ..0..4..0..0....0..1..2..1....0..3..0..1....0..3..0..1....0..1..2..1 %e A197446 ..0..0..3..0....0..1..2..1....0..1..1..2....0..1..1..2....0..1..2..1 %K A197446 nonn %O A197446 1,1 %A A197446 _R. H. Hardin_ Oct 15 2011