This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197476 #30 Feb 15 2025 08:32:14 %S A197476 1,1,3,7,7,4,3,9,3,2,9,0,5,4,5,5,5,5,7,7,8,9,4,4,9,8,6,0,0,5,5,0,0,8, %T A197476 3,4,9,5,8,4,8,0,4,2,9,0,3,4,9,5,7,5,2,7,2,0,1,5,1,8,2,5,2,6,7,3,6,0, %U A197476 9,8,3,4,7,3,4,7,2,7,2,1,7,7,9,8,8,0,3,2,8,0,5,1,7,6,4,4,7,2,7 %N A197476 Decimal expansion of least x>0 having cos(x) = cos(2*x)^2. %C A197476 The Mathematica program includes a graph. Guide for least x>0 satisfying cos(b*x) = cos(c*x)^2, for selected b and c: %C A197476 b.....c......x %C A197476 1.....2.......A197476 %C A197476 1.....3.......A197477 %C A197476 1.....4.......A197478 %C A197476 2.....1.......A000796, Pi %C A197476 2.....3.......A197479 %C A197476 2.....4.......A197480 %C A197476 3.....1.......A019669, Pi/2 %C A197476 3.....2.......A197482 %C A197476 3.....4.......A197483 %C A197476 4.....1.......A168229, arctan(sqrt(7)) %C A197476 4.....2.......A019669, Pi/2 %C A197476 4.....3.......A019679, Pi/12 %C A197476 4.....6.......A197485 %C A197476 4.....8.......A197486 %C A197476 6.....2.......A003881, Pi/4 %C A197476 6.....3.......A019670, Pi/3, tangency point %C A197476 6.....4.......A197488 %C A197476 6.....8.......A197489 %C A197476 1.....4*Pi....A197334 %C A197476 1.....3*Pi....A197335 %C A197476 1.....2*Pi....A197490 %C A197476 1.....3*Pi/2..A197491 %C A197476 1.....Pi......A197492 %C A197476 1.....Pi/2....A197493 %C A197476 1.....Pi/3....A197494 %C A197476 1.....Pi/4....A197495 %C A197476 1.....2*Pi/3..A197506 %C A197476 2.....3*Pi....A197507 %C A197476 2.....3*Pi/2..A197508 %C A197476 2.....2*Pi....A197509 %C A197476 2.....Pi......A197510 %C A197476 2.....Pi/2....A197511 %C A197476 2.....Pi/3....A197512 %C A197476 2.....Pi/4....A197513 %C A197476 2.....Pi/6....A197514 %C A197476 Pi....1.......A197515 %C A197476 Pi....2.......A197516 %C A197476 Pi....1/2.....A197517 %C A197476 2*Pi..1.......A197518 %C A197476 2*Pi..2.......A197519 %C A197476 2*Pi..3.......A197520 %C A197476 Pi/2..Pi/3....A197521 %C A197476 Pi/2..Pi/6....3 %C A197476 Pi/3..1.......A197582 %C A197476 Pi/3..2.......A197583 %C A197476 Pi/3..1/3.....A197584 %C A197476 See A197133 for a guide for least x>0 satisfying sin(b*x) = sin(c*x)^2 for selected b and c. %H A197476 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A197476 1.137743932905455557789449860055008349584... %t A197476 b = 1; c = 2; f[x_] := Cos[x] %t A197476 t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 1.1, 1.3}, WorkingPrecision -> 200] %t A197476 RealDigits[t] (* A197476 *) %t A197476 Plot[{f[b*x], f[c*x]^2}, {x, 0, 2}] %t A197476 (* or *) %t A197476 RealDigits[ ArcCos[ ((19 - 3*Sqrt[33])^(1/3) + (19 + 3*Sqrt[33])^(1/3) - 2)/6], 10, 99] // First (* _Jean-François Alcover_, Feb 19 2013 *) %Y A197476 Cf. A197133. %K A197476 nonn,cons %O A197476 1,3 %A A197476 _Clark Kimberling_, Oct 15 2011 %E A197476 Edited by _Georg Fischer_, Jul 28 2021