This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197589 #6 Mar 30 2012 18:57:53 %S A197589 1,1,2,8,6,8,0,1,9,4,3,3,7,7,5,2,8,4,4,7,0,0,6,0,4,9,8,4,5,3,3,4,6,2, %T A197589 9,4,7,2,6,0,9,5,3,6,4,3,8,6,6,8,3,8,6,0,6,0,5,8,6,9,2,8,2,5,2,1,7,5, %U A197589 0,0,0,9,6,6,8,2,8,9,4,5,0,2,1,9,3,6,8,6,5,1,3,0,4,5,7,2,4,8,8 %N A197589 Decimal expansion of least x>0 satisfying f(x)=m/2, where m is the maximal value of the function f(x)=cos(x)^2+sin(2x)^2. %C A197589 For a discussion and guide to related sequences, see A197739. %e A197589 x=1.12868019433775284470060498453346294726... %t A197589 b = 1; c = 2; %t A197589 f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x]; %t A197589 r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .65, .66}, WorkingPrecision -> 110] %t A197589 RealDigits[r] (* A195700, arcsin(sqrt(3/8)) *) %t A197589 m = s[r] %t A197589 RealDigits[m] %t A197589 Rationalize[{m, m/2, m/3, 2 m/3, m/4, 3 m/4}] %t A197589 Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}] %t A197589 d = m/2; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A197589 RealDigits[t] (* A197589 *) %t A197589 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %t A197589 d = m/3; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A197589 RealDigits[t] (* A197591 *) %t A197589 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %t A197589 d = 1; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A197589 RealDigits[t] (* A019670, pi/3 *) %t A197589 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %t A197589 d = 1/2; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A197589 RealDigits[t] (* A197592 *) %t A197589 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %Y A197589 Cf. A197739, A195700. %K A197589 nonn,cons %O A197589 0,3 %A A197589 _Clark Kimberling_, Oct 18 2011