A197633 Fermat-Wilson quotients of non-Wilson primes: q_p(w_p), where q_p(k) = (k^(p-1)-1)/p is a Fermat quotient, w_p = ((p-1)!+1)/p is a Wilson quotient, and p is a non-Wilson prime.
0, 0, 170578899504, 1387752405580695978098914368989316131852701063520729400
Offset: 1
Keywords
Examples
The 3rd non-Wilson prime is 7, so a(3) = (((6!+1)/7)^6-1)/7 = 170578899504.
Links
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
Programs
-
Mathematica
nmax=4; nonWilsonQ[p_] := Mod[((p-1)!+1)/p ,p] != 0; A197636 = Select[ Prime[ Range[nmax+2]], nonWilsonQ]; a[n_] := With[{p=A197636[[n]]}, ((((p-1)!+1)/p)^(p-1)-1)/p]; Table[ a[n], {n, 1, nmax}] (* Jean-François Alcover, Dec 14 2011 *)
Formula
a(n) = ((((p-1)!+1)/p)^(p-1)-1)/p, where p = A197636(n).
Comments