cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197649 a(n) = Sum_{k=0..n} k*Fibonacci(2*k).

This page as a plain text file.
%I A197649 #59 May 13 2025 08:26:02
%S A197649 0,1,7,31,115,390,1254,3893,11789,35045,102695,297516,853932,2432041,
%T A197649 6881395,19361995,54214939,151164018,419910354,1162585565,3209268665,
%U A197649 8835468881,24266461007,66501634776,181882282200,496539007825,1353272290399,3682496714743
%N A197649 a(n) = Sum_{k=0..n} k*Fibonacci(2*k).
%C A197649 There are only a small number of Fibonacci identities that can be solved for n. Some of these are
%C A197649   1. n = (-F(4*n) + 5*Sum_{k=1..n} F(2*k-1)^2)/2 (Vajda #95).
%C A197649   2. n = (F(n+3) - 2 + Sum_{k=0..n} k*F(k))/F(n+2). (A104286)
%C A197649   3. n = (a(n) + F(2*n))/F(2*n+1).
%C A197649   4. n = F(n+4) - 3 - Sum_{k=0..1} (F(k+2) - 1). (A001924)
%C A197649 n can also be expressed in terms of phi = (1+sqrt(5))/2:
%C A197649   5. n = floor(n*phi^3) - floor(2*n*phi).
%C A197649   6. n = (floor(2*n*phi^2) - floor(2*n*phi))/2.
%H A197649 Michael De Vlieger, <a href="/A197649/b197649.txt">Table of n, a(n) for n = 0..2384</a>
%H A197649 Paul Barry, <a href="https://arxiv.org/abs/2011.10827">Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers</a>, arXiv:2011.10827 [math.CO], 2020.
%H A197649 Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, <a href="https://arxiv.org/abs/2203.13205">Honeycombs in the Pascal triangle and beyond</a>, arXiv:2203.13205 [math.HO], 2022. See p. 5.
%H A197649 Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Florez/florez51.html">Counting Subwords in Non-Decreasing Dyck Paths</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 15, 17, 19.
%H A197649 E. Pérez Herrero, <a href="http://psychedelic-geometry.blogspot.com.es/2010/05/small-fibonacci-sum_13.html">A small Fibonacci sum</a>, Psychedelic Geometry Blogspot
%H A197649 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6,-1).
%F A197649 a(n) = n*F(2*n+1) - F(2*n), where F(n) = Fibonacci(n).
%F A197649 a(n) = ((F(2*n+1)*((n-1)*h(n-1) - (n-1)*h(n-2)) - h(n)*F(2*n))/h(n), n > 2, where h(n) is the n-th harmonic number.
%F A197649 From _R. J. Mathar_, Oct 17 2011: (Start)
%F A197649 G.f.: x*(1+x) / (x^2-3*x+1)^2.
%F A197649 a(n) = A001871(n-1) + A001871(n-2). (End)
%F A197649 a(n) ~ c*n*(3 + sqrt(5))^n*2^(-n), where c = (5 + sqrt(5))/10. - _Stefano Spezia_, Mar 29 2022
%F A197649 E.g.f.: 2*exp(3*x/2)*(5*x*cosh(sqrt(5)*x/2) + sqrt(5)*(2*x - 1)*sinh(sqrt(5)*x/2))/5. - _Stefano Spezia_, Mar 04 2025
%p A197649 a:=n->sum(k*fibonacci(2*k),n= 0..n):seq(a(n), n=0..25);
%t A197649 Table[Sum[k*Fibonacci[2*k], {k, 0, n}], {n, 0, 50}] (* _T. D. Noe_, Oct 17 2011 *)
%Y A197649 Cf. A023619 (inverse binomial transform).
%Y A197649 Cf. A001871, A001924, A104286.
%K A197649 nonn,easy
%O A197649 0,3
%A A197649 _Gary Detlefs_, Oct 16 2011
%E A197649 Identity 4 added by _Gary Detlefs_, Dec 22 2012