This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197652 #54 Oct 29 2024 14:41:08 %S A197652 0,1,10,11,20,21,30,31,40,41,50,51,60,61,70,71,80,81,90,91,100,101, %T A197652 110,111,120,121,130,131,140,141,150,151,160,161,170,171,180,181,190, %U A197652 191,200,201,210,211,220,221,230,231,240,241,250,251,260,261,270,271 %N A197652 Numbers that are congruent to 0 or 1 mod 10. %C A197652 From _Wesley Ivan Hurt_, Sep 26 2015: (Start) %C A197652 Numbers with last digit 0 or 1. %C A197652 Complement of (A260181 Union A262389). (End) %C A197652 Numbers k such that floor(k/2) = 5*floor(k/10). - _Bruno Berselli_, Oct 05 2017 %H A197652 Vincenzo Librandi, <a href="/A197652/b197652.txt">Table of n, a(n) for n = 1..1000</a> %H A197652 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A197652 a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1 and b(k) = 5*2^k = A020714(k) for k>0. %F A197652 From _Zak Seidov_, Oct 20 2011: (Start) %F A197652 a(n) = a(n-2) + 10. %F A197652 a(n) = 5*n - 7 - 2*(-1)^n. (End) %F A197652 From _Vincenzo Librandi_, Jul 11 2012: (Start) %F A197652 G.f.: x^2*(1+9*x)/((1+x)*(1-x)^2). %F A197652 a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End) %F A197652 E.g.f.: 9 + (5*x - 7)*exp(x) - 2*exp(-x). - _David Lovler_, Sep 03 2022 %p A197652 A197652:=n->5*n-7-2*(-1)^n: seq(A197652(n), n=1..100); # _Wesley Ivan Hurt_, Sep 26 2015 %t A197652 CoefficientList[Series[x*(1+9*x)/((1+x)*(1-x)^2),{x,0,50}],x] (* _Vincenzo Librandi_, Jul 11 2012 *) %o A197652 (PARI) a(n)=n\2*10+n%2*9-9 \\ _Charles R Greathouse IV_, Oct 25 2011 %o A197652 (Magma) [5*n-7-2*(-1)^n: n in [1..60]]; // _Vincenzo Librandi_, Jul 11 2012 %o A197652 (Python) %o A197652 def A197652(n): return 5*n-(5 if n&1 else 9) # _Chai Wah Wu_, Oct 29 2024 %Y A197652 Cf. A020714, A030308, A260181, A262389. %K A197652 nonn,easy %O A197652 1,3 %A A197652 _Philippe Deléham_, Oct 16 2011