cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197653 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*4 and containing (k+1)*4 Ls and (n-k)*4 Rs, where Ls and Rs denote arcs of equal length and a central angle of 90 degrees which are positively or negatively oriented.

This page as a plain text file.
%I A197653 #102 Mar 07 2020 05:39:35
%S A197653 1,4,1,15,30,1,40,324,120,1,85,2080,3120,340,1,156,9375,40000,18750,
%T A197653 780,1,259,32886,328125,437500,82215,1554,1,400,96040,1959216,6002500,
%U A197653 3265360,288120,2800,1
%N A197653 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*4 and containing (k+1)*4 Ls and (n-k)*4 Rs, where Ls and Rs denote arcs of equal length and a central angle of 90 degrees which are positively or negatively oriented.
%C A197653 Definition of a meander:
%C A197653 A binary curve C is a triple (m, S, dir) such that
%C A197653 (a) S is a list with values in {L,R} which starts with an L,
%C A197653 (b) dir is a list of m different values, each value of S being allocated a value of dir,
%C A197653 (c) consecutive Ls increment the index of dir,
%C A197653 (d) consecutive Rs decrement the index of dir,
%C A197653 (e) the integer m > 0 divides the length of S and
%C A197653 (f) C is a meander if each value of dir occurs length(S)/m times.
%C A197653 For this sequence, m = 4.
%C A197653 The values in the triangle are proved by brute force for 0 <= n <= 8. The formulas are not yet proved in general.
%C A197653 The number triangle can be calculated recursively by the number triangles A007318, A103371 and A194595. The first column of the triangle seems to be A053698. The diagonal right hand is A000012. The diagonal with k = n-1 seems to be A027445. Row sums are in A198256.
%C A197653 The conjectured formulas are confirmed by dynamic programming for 0 <= n <= 43. - _Susanne Wienand_, Jun 29 2015
%H A197653 Susanne Wienand, <a href="/A197653/b197653.txt">Table of n, a(n) for n = 0..989</a>
%H A197653 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/Meander">Meanders and walks on the circle</a>.
%F A197653 Recursive formula (conjectured):
%F A197653 T(n,k)   = T(4,n,k)
%F A197653 T(4,n,k) = T(1,n,k)^4 + T(1,n,k)*T(3,n,n-1-k), 0 <= k < n
%F A197653 T(4,n,n) = 1                                        k = n
%F A197653 T(3,n,k) = T(1,n,k)^3 + T(1,n,k)*T(2,n,n-1-k), 0 <= k < n
%F A197653 T(3,n,n) = 1                                        k = n
%F A197653 T(2,n,k) = T(1,n,k)^2 + T(1,n,k)*T(1,n,n-1-k), 0 <= k < n
%F A197653 T(2,n,n) = 1                                        k = n
%F A197653 T(3,n,k) = A194595
%F A197653 T(2,n,k) = A103371
%F A197653 T(1,n,k) = A007318 (Pascal's Triangle)
%F A197653 closed formula (conjectured): T(n,n) = 1,                         k = n
%F A197653                 T(n,k) = A + B + C + D,             k < n
%F A197653                      A = (C(n,k))^4
%F A197653                      B = (C(n,k))^3 * C(n,n-1-k)
%F A197653                      C = (C(n,k))^2 *(C(n,n-1-k))^2
%F A197653                      D =  C(n,k)    *(C(n,n-1-k))^3
%F A197653 [_Susanne Wienand_]
%F A197653 Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,3). - _Peter Luschny_, Oct 20 2011
%F A197653 T(n,k) = A198063(n+1,k+1)*C(n,k)^4/(k+1)^3. - _Peter Luschny_, Oct 29 2011
%F A197653 T(n,k) = h(n,k)*binomial(n,k)^4, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n) if 1+2*k-n <> 0, otherwise h(n,k) = 4. - _Peter Luschny_, Nov 24 2011
%e A197653 For n = 4 and k = 2, T(4,4,2) = 3120.
%e A197653 Recursive example:
%e A197653 T(1,4,0) = 1,
%e A197653 T(1,4,1) = 4,
%e A197653 T(1,4,2) = 6,
%e A197653 T(1,4,3) = 4,
%e A197653 T(1,4,4) = 1,
%e A197653 T(3,4,0) = 21,
%e A197653 T(3,4,1) = 304,
%e A197653 T(3,4,2) = 456,
%e A197653 T(3,4,3) = 84,
%e A197653 T(3,4,1) = 1,
%e A197653 T(4,4,2) = 6^4 + 6*304 = 3120.
%e A197653 Example for closed formula:
%e A197653 T(4,2) = 6^4 + 6^3 * 4 + 6^2 * 4^2 + 6 * 4^3 = 3120.
%e A197653 Some examples of list S and allocated values of dir if n = 4 and k = 2:
%e A197653 Length(S) = (4+1)*4 = 20 and S contains (2+1)*4 = 12 Ls.
%e A197653   S: L,L,L,L,L,L,L,L,L,L,L,L,R,R,R,R,R,R,R,R
%e A197653 dir: 1,2,3,0,1,2,3,0,1,2,3,0,0,3,2,1,0,3,2,1
%e A197653   S: L,L,L,R,L,L,R,L,L,R,R,L,L,L,R,L,L,R,R,R
%e A197653 dir: 1,2,3,3,3,0,0,0,1,1,0,0,1,2,2,2,3,3,2,1
%e A197653   S: L,R,L,L,L,L,R,R,R,L,L,R,R,L,L,L,R,L,L,R
%e A197653 dir: 1,1,1,2,3,0,0,3,2,2,3,3,2,2,3,0,0,0,1,1
%e A197653 Each value of dir occurs 20/4 = 5 times.
%e A197653 Triangle begins:
%e A197653    1;
%e A197653    4,    1;
%e A197653   15,   30,    1;
%e A197653   40,  324,  120,   1;
%e A197653   85, 2080, 3120, 340, 1;
%e A197653   ...
%p A197653 A197653 := (n,k) -> binomial(n,k)^4*(n+1)*(n^2-2*n*k+1+2*k+2*k^2)/((1+k)^3);
%p A197653 seq(print(seq(A197653(n, k), k=0..n)), n=0..7); # _Peter Luschny_, Oct 19 2011
%t A197653 T[n_, k_] := Binomial[n, k]^4 (n+1)(n^2 - 2n*k + 1 + 2k + 2k^2)/((1+k)^3);
%t A197653 Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2018, after _Peter Luschny_ *)
%o A197653 (C#) static int[] A197653_row(int r) { return GenBinomial(r, 4); } // The function GenBinomial(r,s) is defined in A194595.
%o A197653 // This C# program causes numerical overflow for results larger than 2147483647. - _Susanne Wienand_, Jun 29 2015
%o A197653 (Sage)
%o A197653 def S(N,n,k) : return binomial(n,k)^(N+1)*sum(sum((-1)^(N-j+i)*binomial(N-i,j)*((n+1)/(k+1))^j for i in (0..N) for j in (0..N)))
%o A197653 def A197653(n,k) : return S(3,n,k)
%o A197653 for n in (0..5) : print([A197653(n,k) for k in (0..n)])  ## _Peter Luschny_, Oct 24 2011
%o A197653 (PARI)
%o A197653 A197653(n,k) = {if(n==1+2*k,4,(1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n))*binomial(n,k)^4} \\ _Peter Luschny_, Nov 24 2011
%Y A197653 Cf. A000012, A007318, A027445, A053698, A103371, A194595, A197654, A197655, A198063, A198256.
%K A197653 nonn,tabl
%O A197653 0,2
%A A197653 _Susanne Wienand_, Oct 17 2011