cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197685 Decimal expansion of Pi^2/(4 + 2*Pi).

This page as a plain text file.
%I A197685 #11 Oct 01 2022 00:46:56
%S A197685 9,5,9,7,8,0,8,5,6,4,4,3,2,3,9,3,2,9,8,5,0,7,2,6,3,0,3,6,8,5,7,8,2,5,
%T A197685 8,0,3,6,1,1,6,2,0,6,6,7,3,1,4,6,0,1,1,5,2,7,8,5,5,5,5,2,1,1,1,1,4,4,
%U A197685 3,3,6,9,2,0,6,7,8,8,6,6,0,6,5,6,6,4,6,0,2,9,2,1,4,3,8,4,2,2,8
%N A197685 Decimal expansion of Pi^2/(4 + 2*Pi).
%C A197685 Least x > 0 such that sin(bx) = cos(cx) (and also sin(cx) = cos(bx)), where b=1 and c=2/Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
%H A197685 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e A197685 x=0.9597808564432393298507263036857825803611620667...
%t A197685 b = 1; c = 2/Pi;
%t A197685 t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .9, 1}]
%t A197685 N[Pi/(2*b + 2*c), 110]
%t A197685 RealDigits[%]  (* A197685 *)
%t A197685 Simplify[Pi/(2*b + 2*c)]
%t A197685 Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi/2}]
%Y A197685 Cf. A197682.
%K A197685 nonn,cons
%O A197685 0,1
%A A197685 _Clark Kimberling_, Oct 17 2011