This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197692 #14 Oct 01 2022 00:49:00 %S A197692 6,7,7,5,6,0,9,8,3,6,0,9,7,4,9,9,3,1,0,0,8,9,6,2,3,8,6,5,3,3,4,5,6,8, %T A197692 8,7,9,4,9,8,0,4,0,4,0,9,4,4,4,8,3,1,6,7,0,9,2,1,5,9,1,1,2,5,5,2,0,1, %U A197692 3,3,7,3,6,5,2,1,2,1,4,7,3,1,3,8,7,0,3,5,2,9,4,8,4,9,8,2,7,7,9 %N A197692 Decimal expansion of (Pi^2)/(2+4*Pi). %C A197692 Least x>0 such that sin(bx)=cos(cx) (and also sin(cx)=cos(bx)), where b=2 and c=1/Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences. %H A197692 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A197692 0.6775609836097499310089623865334568879498040... %p A197692 evalf((Pi^2)/(2+4*Pi),100); # _Wesley Ivan Hurt_, Feb 12 2017 %t A197692 b = 2; c = 1/Pi; %t A197692 t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .6, .7}] %t A197692 N[Pi/(2*b + 2*c), 110] %t A197692 RealDigits[%] (* A197692 *) %t A197692 Simplify[Pi/(2*b + 2*c)] %t A197692 Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 1}] %o A197692 (PARI) Pi^2/(2+4*Pi) \\ _Michel Marcus_, Feb 13 2017 %Y A197692 Cf. A197682. %K A197692 nonn,cons %O A197692 0,1 %A A197692 _Clark Kimberling_, Oct 17 2011