A197704 Integers divisible by their generalized weight.
13, 18, 42, 60, 100, 115, 120, 145, 272, 279, 310, 319, 341, 372, 403, 434, 465, 480, 493, 496, 518, 540, 592, 595, 612, 665, 720, 748, 792, 805, 864, 884, 900, 918, 952, 1053, 1080, 1147, 1200, 1254, 1287, 1312, 1320, 1360, 1440, 1482, 1520, 1560, 1591, 1596
Offset: 1
Crossrefs
Cf. A177869 (same sort of sequence in which each digit gets weight 1).
Programs
-
Haskell
base_weight b g n | n == 0 = 0 | otherwise = (base_weight b g (n `div` b)) + (g $ n `mod` b) interesting b g = filter f [1..] where f n = n `mod` (base_weight b g n) == 0 bin_interesting g = interesting 2 g weights l n | (n >=0) && ((length l) > fromInteger n) = l !! fromInteger n | otherwise = 0 original = weights [4,3] let a = bin_interesting original
-
Mathematica
Select[Range[2000], IntegerQ[#/Plus@@(IntegerDigits[#, 2]/.{1 -> 3, 0 -> 4})] &] (* Alonso del Arte, Oct 17 2011 *)
-
PARI
is(n)=my(v=binary(n));n%(#v<<2-sum(i=1,#v,v[i]))==0 \\ Charles R Greathouse IV, Oct 19 2011
Comments