cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197725 Decimal expansion of Pi^2/(4 + Pi).

This page as a plain text file.
%I A197725 #12 Oct 01 2022 00:53:23
%S A197725 1,3,8,1,9,8,9,2,6,7,6,3,6,0,2,2,7,4,2,1,0,4,5,5,7,8,8,5,2,2,4,6,4,9,
%T A197725 3,4,9,0,0,0,4,1,9,6,2,6,4,2,4,3,4,8,8,5,5,9,1,1,1,4,5,1,1,9,8,0,4,4,
%U A197725 5,5,5,5,3,9,5,0,5,9,6,6,0,7,8,8,0,6,3,2,9,9,3,5,9,4,4,1,1,7,2
%N A197725 Decimal expansion of Pi^2/(4 + Pi).
%C A197725 Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/2 and c=2/Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
%H A197725 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e A197725 1.38198926763602274210455788522464934900041...
%t A197725 b = 1/2; c = 2/Pi;
%t A197725 t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 1.37, 1.39}]
%t A197725 N[Pi/(2*b + 2*c), 110]
%t A197725 RealDigits[%]  (* A197725 *)
%t A197725 Simplify[Pi/(2*b + 2*c)]
%t A197725 Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2.8}]
%t A197725 RealDigits[Pi^2/(4+Pi),10,120][[1]] (* _Harvey P. Dale_, Jul 01 2013 *)
%Y A197725 Cf. A197682.
%K A197725 nonn,cons
%O A197725 1,2
%A A197725 _Clark Kimberling_, Oct 17 2011