This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197739 #19 Feb 22 2025 18:50:43 %S A197739 4,7,7,6,5,8,3,0,9,0,6,2,2,5,4,6,3,9,0,8,1,9,2,8,5,5,1,2,5,7,8,7,8,8, %T A197739 7,7,1,2,1,7,0,7,3,4,7,5,0,5,0,0,2,7,4,5,4,7,9,8,4,9,0,6,4,6,6,0,9,5, %U A197739 6,0,2,2,9,5,1,9,8,8,2,2,7,6,9,3,6,9,5,8,0,1,2,9,2,8,1,4,0,3,6 %N A197739 Decimal expansion of least x>0 having sin(2x)=3*sin(6x). %C A197739 This constant is the least x>0 for which the function f(x)=(sin(x))^2+(cos(3x))^2 has its maximal value. Least positive solutions of the equations f(x)=m/2, f(x)=m/3, f(x)=1, and f(x)=1/2 are given by sequences shown in the guide below. %C A197739 In general, suppose that b and c are distinct positive real numbers. Let f(x)=(sin(bx))^2+cos((cx))^2. The extrema of f are the solutions of b*sin(2bx)=c*sin(2cx). %C A197739 In the following guide, constants x given by the sequences (or explicit number) listed for each b,c are, in this order: %C A197739 (1) least x>0 such that f(x)=(its maximum, m) %C A197739 (2) m, the maximum of f %C A197739 (3) least x>0 having f(x)=m/2 %C A197739 (4) least x>0 having f(x)=m/3 %C A197739 (5) least x>0 having f(x)=1 %C A197739 (6) least x>0 having f(x)=1/2 %C A197739 ... %C A197739 (b,c)=(1,2): A195700, x=25/16, A197589, A197591, %C A197739 A019670, A197592 %C A197739 (b,c)=(1,3): A197739, A197588, A197590, A197755, %C A197739 A003881, A197488 %C A197739 (b,c)=(1,4): A197758, A197759, A197760, A197761, %C A197739 A019692 (x=pi/5), A003881 %C A197739 (b,c)=(1,pi): A197821, A197822, A197823, A197824, %C A197739 A197726, A197826 %C A197739 (b,c)=(1,2*pi): A197827, A197828, A197829, A197830, %C A197739 A197700, A197832 %C A197739 (b,c)=(1,3*pi): A197833, A197834, A197835, A197836, %C A197739 A197837, A197838 %H A197739 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A197739 0.47765830906225463908192855125787887712170734750500... %t A197739 b = 1; c = 3; %t A197739 f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x]; %t A197739 r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .47, .48}, WorkingPrecision -> 110] %t A197739 RealDigits[r] (* A197739 *) %t A197739 m = s[r] %t A197739 RealDigits[m] (* A197588 *) %t A197739 Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}] %t A197739 d = m/2; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110] %t A197739 RealDigits[t] (* A197590 *) %t A197739 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %t A197739 d = m/3; t = x /. FindRoot[s[x] == d, {x, 0.8, 0.9}, WorkingPrecision -> 110] %t A197739 RealDigits[t] (* A197755 *) %t A197739 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %t A197739 d = 1; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110] %t A197739 RealDigits[t] (* A003881 *) %t A197739 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %t A197739 d = 1/2; t = x /. FindRoot[s[x] == d, {x, .9, .93}, WorkingPrecision -> 110] %t A197739 RealDigits[t] (* A197488 *) %t A197739 Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] %t A197739 RealDigits[ ArcTan[ Sqrt[ 2-Sqrt[3] ] ], 10, 99] // First (* _Jean-François Alcover_, Feb 27 2013 *) %Y A197739 Cf. A197739, A197588. %K A197739 nonn,cons %O A197739 0,1 %A A197739 _Clark Kimberling_, Oct 18 2011