This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197818 #38 Mar 29 2014 02:42:26 %S A197818 1,3,5,15,17,51,93,255,257,771,1453,3855,4593,13299,23901,65535,65537, %T A197818 196611,371373,983055,1175281,3394803,6103645,16711935,16908033, %U A197818 50593539,95245741,252706575,301011441,871576563,1566432605,4294967295 %N A197818 Walsh matrix antidiagonals converted to decimal. %C A197818 Infinite Walsh matrix with the negative ones replaced by zeros (negated binary Walsh matrix), the antidiagonals read as binary numbers. %C A197818 This sequence is similar to A001317 (Sierpinski triangle rows converted to decimal). a(n) = A001317(n) iff n=0 or n is an element of A099627. %H A197818 Tilman Piesk, <a href="/A197818/b197818.txt">Table of n, a(n) for n = 0..1023</a> %H A197818 Tilman Piesk, <a href="http://commons.wikimedia.org/wiki/File:Binary_Walsh_matrix_256_neg.svg">Negated binary Walsh matrix of size 256</a> %H A197818 Tilman Piesk, <a href="http://commons.wikimedia.org/wiki/File:Binary_Walsh_matrix_256_neg;_diags_to_cols.svg">The antidiagonals shown in a triangular matrix</a> %H A197818 Wikipedia, <a href="http://en.wikipedia.org/wiki/Walsh_matrix">Walsh matrix</a> %e A197818 Top left corner of the negated binary Walsh matrix: %e A197818 1 1 1 1 1 1 1 1 %e A197818 1 0 1 0 1 0 1 0 %e A197818 1 1 0 0 1 1 0 0 %e A197818 1 0 0 1 1 0 0 1 %e A197818 1 1 1 1 0 0 0 0 %e A197818 1 0 1 0 0 1 0 1 %e A197818 1 1 0 0 0 0 1 1 %e A197818 1 0 0 1 0 1 1 0 %e A197818 The antidiagonals in binary and decimal are: %e A197818 1 = 1 %e A197818 11 = 3 %e A197818 101 = 5 %e A197818 1111 = 15 %e A197818 10001 = 17 %e A197818 110011 = 51 %e A197818 1011101 = 93 %e A197818 11111111 = 255 %o A197818 (PARI) %o A197818 N=2^5; /* a power of 2 */ %o A197818 parity(x)= { %o A197818 my(s=1); %o A197818 while ( (x>>s), x=bitxor(x, x>>s); s+=s; ); %o A197818 return( bitand(x,1) ); %o A197818 } %o A197818 W = matrix(N,N, i,j, if(parity(bitand(i-1,j-1)),0,1); ); %o A197818 a(n) = sum(k=0,n, 2^k * W[n-k+1,k+1] ); %o A197818 vector(N,n,a(n-1)) %o A197818 /* _Joerg Arndt_, Mar 27 2013 */ %Y A197818 Cf. A001317, A099627. %K A197818 nonn,base %O A197818 0,2 %A A197818 _Tilman Piesk_, Oct 18 2011