A197821 Decimal expansion of least x > 0 having sin(2*x) = Pi*sin(2*Pi*x).
4, 5, 9, 2, 9, 5, 3, 4, 1, 2, 6, 2, 1, 0, 7, 5, 5, 1, 0, 5, 4, 8, 3, 7, 5, 1, 0, 3, 5, 8, 0, 5, 2, 6, 4, 9, 1, 9, 2, 0, 0, 4, 0, 4, 2, 1, 4, 7, 2, 5, 5, 0, 7, 2, 7, 3, 4, 0, 9, 2, 9, 0, 5, 4, 5, 3, 3, 6, 9, 0, 1, 8, 8, 4, 9, 5, 0, 8, 0, 6, 9, 5, 5, 7, 2, 6, 2, 8, 7, 5, 9, 9, 6, 1, 8, 6, 1, 5, 9
Offset: 0
Examples
0.45929534126210755105483751035805264919200...
Crossrefs
Cf. A197739.
Programs
-
Mathematica
b = 1; c = Pi; f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x]; r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .45, .46}, WorkingPrecision -> 110] RealDigits[r] (* A197821 *) m = s[r] RealDigits[m] (* A197822 *) Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}] d = m/2; t = x /. FindRoot[s[x] == d, {x, .7, .8}, WorkingPrecision -> 110] RealDigits[t] (* A197823 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = m/3; t = x /. FindRoot[s[x] == d, {x, .8, .9}, WorkingPrecision -> 110] RealDigits[t] (* A197824 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = 1; t = x /. FindRoot[s[x] == d, {x, .7, .8}, WorkingPrecision -> 110] RealDigits[t] (* A197726 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = 1/2; t = x /. FindRoot[s[x] == d, {x, .89, 9.1}, WorkingPrecision -> 110] RealDigits[t] (* A197826 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
Extensions
Definition corrected by Georg Fischer, Aug 10 2021
Comments