cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197821 Decimal expansion of least x > 0 having sin(2*x) = Pi*sin(2*Pi*x).

Original entry on oeis.org

4, 5, 9, 2, 9, 5, 3, 4, 1, 2, 6, 2, 1, 0, 7, 5, 5, 1, 0, 5, 4, 8, 3, 7, 5, 1, 0, 3, 5, 8, 0, 5, 2, 6, 4, 9, 1, 9, 2, 0, 0, 4, 0, 4, 2, 1, 4, 7, 2, 5, 5, 0, 7, 2, 7, 3, 4, 0, 9, 2, 9, 0, 5, 4, 5, 3, 3, 6, 9, 0, 1, 8, 8, 4, 9, 5, 0, 8, 0, 6, 9, 5, 5, 7, 2, 6, 2, 8, 7, 5, 9, 9, 6, 1, 8, 6, 1, 5, 9
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			0.45929534126210755105483751035805264919200...
		

Crossrefs

Cf. A197739.

Programs

  • Mathematica
    b = 1; c = Pi;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .45, .46}, WorkingPrecision -> 110]
    RealDigits[r]  (* A197821 *)
    m = s[r]
    RealDigits[m]  (* A197822 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[t]   (* A197823 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197824 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197726 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, .89, 9.1}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197826 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]

Extensions

Definition corrected by Georg Fischer, Aug 10 2021