cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197870 Expansion of false theta series variation of Ramanujan theta function psi(x).

This page as a plain text file.
%I A197870 #22 Feb 16 2025 08:33:15
%S A197870 1,-1,0,1,0,0,-1,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,
%T A197870 0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
%U A197870 -1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0
%N A197870 Expansion of false theta series variation of Ramanujan theta function psi(x).
%C A197870 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H A197870 G. C. Greubel, <a href="/A197870/b197870.txt">Table of n, a(n) for n = 0..5000</a>
%H A197870 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A197870 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A197870 G.f.: Sum_{k>=0} (-1)^k * x^(k*(k+1)/2). |a(n)| = A010054(n).
%F A197870 G.f.: G(0) where G(k) = 1 - q^(k+1)*G(k+1)  = 1 - q*(1 - q^2*(1 - q^3*(1 - q^4*(1 - ...)))). - _Joerg Arndt_, Jun 29 2013
%F A197870 G.f.: Sum_{k>=0} a(k) * x^(3*k) = 1 / (1+x) + x*(1-x) / ((1+x)*(1+x^2)*(1+x^3)) + x^2*(1-x)*(1-x^3) / ((1+x)*(1+x^2)*...*(1+x^5)) + ... - _Michael Somos_, Jul 21 2014
%e A197870 G.f. = 1 - x + x^3 - x^6 + x^10 - x^15 + x^21 - x^28 + x^36 - x^45 + x^55 + ...
%e A197870 G.f. = q - q^9 + q^25 - q^49 + q^81 - q^121 + q^169 - q^225 + q^289 - q^361 + ...
%t A197870 a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2), {k, 0, (Sqrt[8 n + 1] - 1)/2}], {x, 0, n}]]; (* _Michael Somos_, Jul 21 2014 *)
%t A197870 a[n_] := Module[{r, k}, r = Reduce[k >= 0 && 2n == k(k+1), k, Integers]; If[r === False, 0, (-1)^r[[2]] ] ]; Table[a[n], {n, 0, 104}] (* _Jean-François Alcover_, Nov 27 2016 *)
%o A197870 (PARI) {a(n) = local(x); if( issquare( 8*n + 1, &x), (-1)^(x\2), 0)};
%Y A197870 Cf. A010054.
%Y A197870 Cf. A005169 (g.f.: G(0), where G(k) = 1/( 1 - q^(k+1)*G(k+1) ) ).
%K A197870 sign
%O A197870 0,1
%A A197870 _Michael Somos_, Oct 18 2011