This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197880 #21 May 10 2019 23:59:30 %S A197880 1,6,30,35,70,77,3003,1430,24310,230945,969969,4056234,676039,312018, %T A197880 1292646,33393355,2203961430,90751353,3357800061,1531628098, %U A197880 156991880045,5786272150230,105204948186,107492012277,35830670759,3654728417418,14900046624858 %N A197880 Squarefree part of ((2n-1)!)^(2n-3). %C A197880 These numbers are quadratic fields of extensions of polynomials of odd degree obtained by taken 2n-1 terms of expansion of e^x in power series at 0. All these polynomials have Galois group S(2n-1) over rationals. %F A197880 a(n) = A007913(A134367(2*n-1)). - _R. J. Mathar_, Oct 25 2011 %p A197880 A134367 := proc(n) %p A197880 (n!)^(n-2) ; %p A197880 end proc: %p A197880 A007913 := proc(n) %p A197880 a := 1 ; %p A197880 for pf in ifactors(n)[2] do %p A197880 p := op(1,pf) ; %p A197880 e := op(2,pf) ; %p A197880 a := a*p^(e mod 2) ; %p A197880 end do: %p A197880 a ; %p A197880 end proc: %p A197880 A198480 := proc(n) %p A197880 A007913( A134367(2*n-1)) ; %p A197880 end proc: %p A197880 seq(A198480(n),n=1..10) ; # _R. J. Mathar_, Oct 25 2011 %t A197880 aa = {}; data = Table[kk = Sqrt[(n!)^(n - 2)], {n, 1, 100, 2}]; sp = data /. Sqrt[_] -> 1; sfp = data/sp; sfp^2 %Y A197880 Cf. A007913, A134367, A198481. %K A197880 nonn %O A197880 1,2 %A A197880 _Artur Jasinski_, Oct 25 2011