A197883 Number of n X 2 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 0,2,1,1,1 for x=0,1,2,3,4.
0, 4, 3, 14, 18, 43, 78, 154, 305, 572, 1178, 2185, 4440, 8408, 16795, 32212, 63608, 123295, 241494, 470486, 918795, 1793434, 3497978, 6831997, 13324168, 26019470, 50755921, 99095168, 193344576, 377408195, 736481712, 1437442548, 2805273219
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2..1....2..1....1..2....1..2....2..1....1..2....0..1....2..1....0..1....1..2 ..1..3....1..3....3..1....3..1....1..0....0..1....1..2....1..0....1..2....0..1 ..3..1....0..1....1..3....1..0....1..2....2..1....1..2....3..1....1..0....1..0 ..1..2....1..2....2..1....2..1....0..1....1..0....0..1....1..2....2..1....2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A197889.
Formula
Empirical: a(n) = 3*a(n-2) +2*a(n-3) +a(n-4) -3*a(n-5) -4*a(n-6) +7*a(n-7) -5*a(n-9).
Empirical g.f.: x^2*(4 + 3*x + 2*x^2 + x^3 - 9*x^4 + 5*x^5 - 7*x^7) / ((1 - x)*(1 + x - 2*x^2 - 4*x^3 - 5*x^4 - 2*x^5 + 2*x^6 - 5*x^7 - 5*x^8)). - Colin Barker, May 14 2018
Comments