This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A197986 #25 Feb 05 2024 10:56:24 %S A197986 8,16,37,77,141,235,364,536,756,1030,1364,1764,2236,2786,3420,4144, %T A197986 4964,5886,6916,8060,9324,10714,12236,13896,15700,17654,19764,22036, %U A197986 24476,27090,29884,32864,36036,39406,42980,46764,50764 %N A197986 a(n) = round((n+1/n)^3). %H A197986 Vincenzo Librandi, <a href="/A197986/b197986.txt">Table of n, a(n) for n = 1..10000</a> %H A197986 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A197986 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(1)= 8, a{2}=16, a(3)=37, a(4)=77, a(5)=141, a(6)=235, a(7)=364, a(8)=536, a(9)=756, a(10)=1030. - _Harvey P. Dale_, Apr 05 2012 %F A197986 From _G. C. Greubel_, Feb 04 2024: (Start) %F A197986 a(n) = n*(n^2+3) for n > 6, with a(1)=8, a(2)=16, a(3)=37, a(4)=77, a(5)=141, a(6)=235. %F A197986 G.f.: x*(8 - 16*x + 21*x^2 - 7*x^3 - x^4 + x^5 - x^6 + 3*x^7 - 3*x^8 + x^9)/(1-x)^4. %F A197986 E.g.f.: 4*x + x^2 + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x*(4 + 3*x + x^2)*exp(x). (End) %t A197986 Table[Round[(n+1/n)^3],{n,40}] (* or *) Join[{8,16,37,77,141,235}, LinearRecurrence[ {4,-6,4,-1},{364,536,756,1030},40]] (* _Harvey P. Dale_, Apr 05 2012 *) %o A197986 (Magma) [Round((n+1/n)^3): n in [1..60]] %o A197986 (SageMath) [8,16,37,77,141,235]+[n*(n^2+3) for n in range(7,51)] # _G. C. Greubel_, Feb 04 2024 %Y A197986 Cf. A014056, A197985. %K A197986 nonn,easy %O A197986 1,1 %A A197986 _Vincenzo Librandi_, Oct 21 2011