This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A198059 #18 Feb 11 2019 01:42:42 %S A198059 1,9,28,121,496,2100,9017,38969,169975,744984,3282005,14513236, %T A198059 64394500,286519305,1277975053,5712392313,25581765122,114754116351, %U A198059 515530099946,2319115721576,10445215621547,47096725844837,212569226371737,960306310551860,4341968468524371 %N A198059 a(n) = Sum_{k=1..n} binomial(2*k, n-k)^2 * n/k. %H A198059 G. C. Greubel, <a href="/A198059/b198059.txt">Table of n, a(n) for n = 1..1000</a> %F A198059 Logarithmic derivative of A197601. %F A198059 L.g.f.: Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 *x^k] *x^n/n. %F A198059 L.g.f.: Sum_{n>=1} (1-x)^(4*n+1) *[Sum_{k>=0} C(2*n+k,k)^2 *x^k] *x^n/n. %F A198059 G.f.: sqrt((1 + (15*x^3+2*x^2-x+3)/w - (x^3-2*x^2+x-4)/sqrt(w))/2) - 2 where w = (x^3-2*x^2-3*x-1)*(x^3-2*x^2+5*x-1). - _Mark van Hoeij_, May 06 2013 %e A198059 L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + ... %e A198059 where %e A198059 exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 + ... + A197601(n)*x^n + ... %e A198059 The l.g.f. equals the series: %e A198059 L(x) = (1 + 2^2*x + x^2)*x %e A198059 + (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2 %e A198059 + (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3 %e A198059 + (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4 %e A198059 + (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 + ... %e A198059 which involves the squares of the coefficients in even powers of (1+x). %e A198059 Also, %e A198059 L(x) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 + ...)*x %e A198059 + (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 + ...)*x^2/2 %e A198059 + (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 + ...)*x^3/3 %e A198059 + (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 + ...)*x^4/4 %e A198059 + (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 + ...)*x^5/5 + ... %e A198059 which involves the squares of the coefficients in odd powers of 1/(1-x). %p A198059 w := (x^3-2*x^2-3*x-1)*(x^3-2*x^2+5*x-1); %p A198059 sqrt((1 + (15*x^3+2*x^2-x+3)/w - (x^3-2*x^2+x-4)/sqrt(w))/2) - 2; %p A198059 series(%,x=0,30); # _Mark van Hoeij_, May 06 2013 %t A198059 Table[Sum[Binomial[2k,n-k]^2 n/k,{k,n}],{n,30}] (* _Harvey P. Dale_, Oct 25 2011 *) %o A198059 (PARI) {a(n)=n*sum(k=1,n,binomial(2*k,n-k)^2/k)} %o A198059 (PARI) {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, n, binomial(2*m, k)^2 *x^k)*x^m/m)+x*O(x^n), n)} %o A198059 (PARI) {a(n)=n*polcoeff(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k)*x^m/m+x*O(x^n)), n)} %Y A198059 Cf. A197601 (exp). %K A198059 nonn %O A198059 1,2 %A A198059 _Paul D. Hanna_, Oct 20 2011