A198061 Array read by antidiagonals, m>=0, n>=0, A(m,n) = sum{k=0..n} sum{j=0..m} sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).
1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 11, 12, 5, 0, 2, 20, 32, 20, 6, 0, 2, 37, 84, 70, 30, 7, 0, 2, 70, 224, 240, 130, 42, 8, 0, 2, 135, 612, 834, 550, 217, 56, 9, 0, 2, 264, 1712, 2968, 2354, 1092, 336, 72, 10, 0, 2, 521, 4884, 10826, 10310, 5551, 1960, 492
Offset: 0
Examples
m\n [0] [1] [2] [3] [4] [5] [6] ---------------------------------------------- [0] 1 2 3 4 5 6 7 A000027 [1] 0 2 6 12 20 30 42 A002378 [2] 0 2 11 32 70 130 217 A033994 [3] 0 2 20 84 240 550 1092 A098077 [4] 0 2 37 224 834 2354 5551 [5] 0 2 70 612 2968 10310 28854
Crossrefs
Cf. A198060.
Programs
-
Maple
A198061 := proc(m, n) local i,j,k,pow; pow := (a,b) -> if a=0 and b=0 then 1 else a^b fi; add(add(add((-1)^(j+i)*binomial(i,j)*pow(n,j)*pow(k,m-j),i=0..m),j=0..m),k=0..n) end: for m from 0 to 8 do lprint(seq(A198061(m,n), n=0..6)) od;
-
Mathematica
Unprotect[Power]; 0^0 = 1; Protect[Power]; a[m_, n_] := Sum[(-1)^(j+i)*Binomial[i, j]*n^j*k^(m-j) , {i, 0, m}, {j, 0, m}, {k, 0, n}]; Table[a[m-n, n], {m, 0, 10}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jul 26 2013 *)