cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198064 Triangle read by rows (n >= 0, 0 <= k <= n, m = 4); T(n,k) = Sum{j=0..m} Sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).

Original entry on oeis.org

0, 1, 1, 16, 5, 16, 81, 31, 31, 81, 256, 121, 80, 121, 256, 625, 341, 211, 211, 341, 625, 1296, 781, 496, 405, 496, 781, 1296, 2401, 1555, 1031, 781, 781, 1031, 1555, 2401, 4096, 2801, 1936, 1441, 1280, 1441, 1936, 2801, 4096, 6561, 4681, 3355, 2511, 2101
Offset: 0

Views

Author

Peter Luschny, Oct 26 2011

Keywords

Examples

			[0]                      0
[1]                     1, 1
[2]                  16, 5, 16
[3]                81, 31, 31, 81
[4]            256, 121, 80, 121, 256
[5]         625, 341, 211, 211, 341, 625
[6]     1296, 781, 496, 405, 496, 781, 1296
[7] 2401, 1555, 1031, 781, 781, 1031, 1555, 2401
		

Crossrefs

Programs

  • Maple
    A198064 := (n,k) -> k^4-2*k^3*n+4*k^2*n^2-3*k*n^3+n^4:

Formula

T(n,k) = k^4-2*k^3*n+4*k^2*n^2-3*k*n^3+n^4.
T(n,0) = T(n,n) = n^m = n^4 = A000583(n).
T(2n,n) = (m+1)n^m = 5n^4.
T(2n+1,n+1) = (n+1)^(m+1)-n^(m+1) = (n+1)^5-n^5 = A022521(n).
Sum{k=0..n} T(n,k) = (16n^5+30n^4+15n^3-n)/30.
T(n+1,k+1)C(n,k)^5/(k+1)^4 = A197654(n,k).