A198066 Square array read by antidiagonals, n>=1, k>=1; T(n,k) is the number of primes which are prime to n and are not strong divisors of k.
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 3, 1, 1, 1, 1, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 3, 3, 2, 1, 2, 0, 1, 0, 0, 2, 2, 2, 2, 0, 0, 1, 0, 0, 0, 4, 2, 3, 3, 2, 1, 2, 1, 1, 0, 0, 3, 3, 1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 5, 3, 3, 2, 2, 2, 3, 1, 1, 1, 1, 0, 0
Offset: 1
Examples
T(15, 22) = card({7,13}) = 2 because the coprimes of 15 are {1,2,4,7,8,11,13,14} and the strong divisors of 22 are {2,11,22}. - [x][1][2][3][4][5][6][7][8] [1] 0, 0, 0, 0, 0, 0, 0, 0 [2] 0, 0, 0, 0, 0, 0, 0, 0 [3] 1, 0, 1, 0, 1, 0, 1, 0 [4] 1, 1, 0, 1, 1, 0, 1, 1 [5] 2, 1, 1, 1, 2, 0, 2, 1 [6] 1, 1, 1, 1, 0, 1, 1, 1 [7] 3, 2, 2, 2, 2, 1, 3, 2 [8] 3, 3, 2, 3, 2, 2, 2, 3 - Triangle k=1..n, n>=1: [1] 0 [2] 0, 0 [3] 1, 0, 1 [4] 1, 1, 0, 1 [5] 2, 1, 1, 1, 2 [6] 1, 1, 1, 1, 0, 1 [7] 3, 2, 2, 2, 2, 1, 3 [8] 3, 3, 2, 3, 2, 2, 2, 3 - Triangle n=1..k, k>=1: [1] 0 [2] 0, 0 [3] 0, 0, 1 [4] 0, 0, 0, 1 [5] 0, 0, 1, 1, 2 [6] 0, 0, 0, 0, 0, 1 [7] 0, 0, 1, 1, 2, 1, 3 [8] 0, 0, 0, 1, 1, 1, 2, 3
Links
- Peter Luschny, Euler's totient function
Programs
-
Maple
strongdivisors := n -> numtheory[divisors](n) minus {1}: coprimes := n -> select(k->igcd(k, n)=1, {$1..n}): primes := n -> select(isprime, {$1..n}): T := (n,k) -> nops(primes(n) intersect (coprimes(n) minus strongdivisors(k))): seq(seq(T(n-k+1, k), k=1..n), n=1..13); # Square array by antidiagonals. seq(print(seq(T(n,k), k=1..n)), n=1..8); # Lower triangle. seq(print(seq(T(n,k), n=1..k)), k=1..8); # Upper triangle.
-
Mathematica
T[n_, k_] := Complement[Select[Range[n-1], PrimeQ[#] && CoprimeQ[#, n]&], Rest[Divisors[k]]] // Length; Table[T[n-k+1, k], {n, 1, 13}, {k, 1, n}] (* Jean-François Alcover, Jun 29 2019 *)
Comments